Skip to main content

Advertisement

Log in

Risk stratification of solitary pulmonary nodules by means of PET using 18F-fluorodeoxyglucose and SUV quantification

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

18F-fluorodeoxyglucose (FDG) PET is the most accurate imaging modality in characterizing a solitary pulmonary nodule (SPN). Besides visual image interpretation, semiquantitative analysis using standardized uptake values (SUV) is performed to improve diagnostic accuracy. Mostly, an SUV threshold of 2.5 is applied to differentiate between benign and malignant lesions. In this study we analysed the use different SUV thresholds to predict the post-test probability of malignancy for the individual patient considering his pre-test probability. Furthermore, we investigated the prognostic value of SUV in SPN for survival.

Methods

This retrospective study included 140 consecutive patients who underwent FDG PET for evaluation of SPN. Visual interpretation was performed by two readers. For semiquantitative analysis, maximum SUV (SUVmax) was measured in all SPN. A final diagnosis was obtained by pathological examination or follow-up of more than 2 years. In a nomogram, positive and negative predictive values (PPV and NPV) were plotted against the hypothetical SUV threshold to determine the optimum SUV threshold. Survival was analysed using the Kaplan-Meier method and log-rank test.

Results

The prevalence of malignancy was 57%. The FDG uptake in malignant SPNs was higher than in benign SPNs (SUV 9.7 ± 5.5 vs 2.6 ± 2.5, p < 0.01). More than 90% of SPNs with an SUV below 2.0 were benign (sensitivity, specificity, NPV of 96, 55 and 92%). The highest diagnostic accuracy was achieved with an SUV of 4.0 (sensitivity, specificity and accuracy of 85%). Visual interpretation achieved corresponding values of 94, 70 and 84%, respectively. In lung cancer higher FDG uptake (SUVmax ≥ 9.5) was associated with shorter survival (median survival 20 months) and low FDG uptake with longer survival (>75 months).

Conclusion

FDG PET allows assessment of the individual risk for malignancy in SPNs by considering tumoural SUV and pre-test probability. Higher FDG uptake in lung cancer as measured by SUV analysis is a prognostic factor. In patients with low FDG uptake in an SPN and increased risk during surgery omission of diagnostic thoracotomy may be warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khouri NF, Meziane MA, Zerhouni EA, Fishman EK, Siegelman SS. The solitary pulmonary nodule. Assessment, diagnosis, and management. Chest 1987;91:128–33.

    Article  PubMed  CAS  Google Scholar 

  2. Ginsberg MS, Griff SK, Go BD, Yoo HH, Schwartz LH, Panicek DM. Pulmonary nodules resected at video-assisted thoracoscopic surgery: etiology in 426 patients. Radiology 1999;213:277–82.

    PubMed  CAS  Google Scholar 

  3. Jiménez MF, Spanish Video-Assisted Thoracic Surgery Study Group. Prospective study on video-assisted thoracoscopic surgery in the resection of pulmonary nodules: 209 cases from the Spanish Video-Assisted Thoracic Surgery Study Group. Eur J Cardiothorac Surg 2001;19:562–5.

    Article  PubMed  Google Scholar 

  4. Lillington GA. Management of the solitary pulmonary nodule. Hosp Pract (Off Ed) 1993;28:41–8.

    CAS  Google Scholar 

  5. Falcoz PE, Conti M, Brouchet L, Chocron S, Puyraveau M, Mercier M, et al. The Thoracic Surgery Scoring System (Thoracoscore): risk model for in-hospital death in 15,183 patients requiring thoracic surgery. J Thorac Cardiovasc Surg 2007;133:325–32.

    Article  PubMed  Google Scholar 

  6. Goodney PP, Lucas FL, Stukel TA, Birkmeyer JD. Surgeon specialty and operative mortality with lung resection. Ann Surg 2005;241:179–84.

    PubMed  Google Scholar 

  7. Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 2001;285:914–24.

    Article  PubMed  CAS  Google Scholar 

  8. Cronin P, Dwamena BA, Kelly AM, Carlos RC. Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology 2008;246:772–82.

    Article  PubMed  Google Scholar 

  9. Hellwig D, Baum RP, Kirsch C. FDG-PET, PET/CT and conventional nuclear medicine procedures in the evaluation of lung cancer: a systematic review. Nuklearmedizin 2009;48:59–69. quiz N8-9.

    PubMed  CAS  Google Scholar 

  10. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009;50 Suppl 1:11S–20.

    Article  PubMed  CAS  Google Scholar 

  11. Nahmias C, Wahl LM. Reproducibility of standardized uptake value measurements determined by 18F-FDG PET in malignant tumors. J Nucl Med 2008;49:1804–8.

    Article  PubMed  Google Scholar 

  12. Kim SK, Allen-Auerbach M, Goldin J, Fueger BJ, Dahlbom M, Brown M, et al. Accuracy of PET/CT in characterization of solitary pulmonary lesions. J Nucl Med 2007;48:214–20.

    PubMed  Google Scholar 

  13. Goodgame B, Pillot GA, Yang Z, Shriki J, Meyers BF, Zoole J, et al. Prognostic value of preoperative positron emission tomography in resected stage I non-small cell lung cancer. J Thorac Oncol 2008;3:130–4.

    Article  PubMed  Google Scholar 

  14. Grgic A, Nestle U, Schaefer-Schuler A, Kremp S, Kirsch CM, Hellwig D. FDG-PET-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning–an intraindividual comparison. Int J Radiat Oncol Biol Phys 2009;73:103–11.

    PubMed  Google Scholar 

  15. Hellwig D, Graeter TP, Ukena D, Groeschel A, Sybrecht GW, Schaefers HJ, et al. 18F-FDG PET for mediastinal staging of lung cancer: which SUV threshold makes sense? J Nucl Med 2007;48:1761–6.

    Article  PubMed  Google Scholar 

  16. Fletcher JW, Kymes SM, Gould M, Alazraki N, Coleman RE, Lowe VJ, et al. A comparison of the diagnostic accuracy of 18F-FDG PET and CT in the characterization of solitary pulmonary nodules. J Nucl Med 2008;49:179–85.

    Article  PubMed  Google Scholar 

  17. Zhou XH. Correcting for verification bias in studies of a diagnostic test’s accuracy. Stat Methods Med Res 1998;7:337–53.

    Article  PubMed  CAS  Google Scholar 

  18. Skehan SJ, Coates G, Otero C, O’Donovan N, Pelling M, Nahmias C. Visual and semiquantitative analysis of 18F-fluorodeoxyglucose positron emission tomography using a partial-ring tomograph without attenuation correction to differentiate benign and malignant pulmonary nodules. Can Assoc Radiol J 2001;52:259–65.

    PubMed  CAS  Google Scholar 

  19. Lowe VJ, Fletcher JW, Gobar L, Lawson M, Kirchner P, Valk P, et al. Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol 1998;16:1075–84.

    PubMed  CAS  Google Scholar 

  20. Ferran N, Ricart Y, Lopez M, Martinez-Ballarin I, Roca M, Gámez C, et al. Characterization of radiologically indeterminate lung lesions: 99mTc-depreotide SPECT versus 18F-FDG PET. Nucl Med Commun 2006;27:507–14.

    Article  PubMed  Google Scholar 

  21. Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K, Uno K. Visual and semiquantitative analyses for F-18 fluorodeoxyglucose PET scanning in pulmonary nodules 1 cm to 3 cm in size. Ann Thorac Surg 2005;79:984–8. discussion 9.

    Article  PubMed  Google Scholar 

  22. Hashimoto Y, Tsujikawa T, Kondo C, Maki M, Momose M, Nagai A, et al. Accuracy of PET for diagnosis of solid pulmonary lesions with 18F-FDG uptake below the standardized uptake value of 2.5. J Nucl Med 2006;47:426–31.

    PubMed  Google Scholar 

  23. Ost D, Fein AM, Feinsilver SH. Clinical practice. The solitary pulmonary nodule. N Engl J Med 2003;348:2535–42.

    Article  PubMed  Google Scholar 

  24. Winer-Muram HT. The solitary pulmonary nodule. Radiology 2006;239:34–49.

    Article  PubMed  Google Scholar 

  25. Swensen SJ, Silverstein MD, Ilstrup DM, Schleck CD, Edell ES. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Arch Intern Med 1997;157:849–55.

    Article  PubMed  CAS  Google Scholar 

  26. Schultz EM, Sanders GD, Trotter PR, Patz EF Jr, Silvestri GA, Owens DK, et al. Validation of two models to estimate the probability of malignancy in patients with solitary pulmonary nodules. Thorax 2008;63:335–41.

    Article  PubMed  CAS  Google Scholar 

  27. Herder GJ, van Tinteren H, Golding RP, Kostense PJ, Comans EF, Smit EF, et al. Clinical prediction model to characterize pulmonary nodules: validation and added value of 18F-fluorodeoxyglucose positron emission tomography. Chest 2005;128:2490–6.

    Article  PubMed  Google Scholar 

  28. Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med 2005;46:424–8.

    PubMed  Google Scholar 

  29. Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 1999;40:1771–7.

    PubMed  CAS  Google Scholar 

  30. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med 1994;35:1308–12.

    PubMed  CAS  Google Scholar 

  31. Paquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues. J Nucl Med 2004;45:784–8.

    PubMed  CAS  Google Scholar 

  32. Ahuja V, Coleman RE, Herndon J, Patz EF Jr. The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer 1998;83:918–24.

    Article  PubMed  CAS  Google Scholar 

  33. Vansteenkiste JF, Stroobants SG, Dupont PJ, De Leyn PR, Verbeken EK, Deneffe GJ, et al. Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: an analysis of 125 cases. Leuven Lung Cancer Group. J Clin Oncol 1999;17:3201–6.

    PubMed  CAS  Google Scholar 

  34. Sasaki R, Komaki R, Macapinlac H, Erasmus J, Allen P, Forster K, et al. [18F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J Clin Oncol 2005;23:1136–43.

    Article  PubMed  CAS  Google Scholar 

  35. Downey RJ, Akhurst T, Gonen M, Vincent A, Bains MS, Larson S, et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol 2004;22:3255–60.

    Article  PubMed  Google Scholar 

  36. Agarwal M, Brahmanday G, Bajaj SK, Ravikrishnan KP, Wong CY. Revisiting the prognostic value of preoperative (18)F-fluoro-2-deoxyglucose ((18)F-FDG) positron emission tomography (PET) in early-stage (I & II) non-small cell lung cancers (NSCLC). Eur J Nucl Med Mol Imaging 2009.

  37. Groome PA, Bolejack V, Crowley JJ, Kennedy C, Krasnik M, Sobin LH, et al. The IASLC Lung Cancer Staging Project: validation of the proposals for revision of the T, N, and M descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol 2007;2:694–705.

    Article  PubMed  Google Scholar 

  38. Duhaylongsod FG, Lowe VJ, Patz EF Jr, Vaughn AL, Coleman RE, Wolfe WG. Lung tumor growth correlates with glucose metabolism measured by fluoride-18 fluorodeoxyglucose positron emission tomography. Ann Thorac Surg 1995;60:1348–52.

    Article  PubMed  CAS  Google Scholar 

  39. Higashi K, Ueda Y, Arisaka Y, Sakuma T, Nambu Y, Oguchi M, et al. 18F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer. J Nucl Med 2002;43:39–45.

    PubMed  Google Scholar 

  40. Dhital K, Saunders CA, Seed PT, O’Doherty MJ, Dussek J. [(18)F]Fluorodeoxyglucose positron emission tomography and its prognostic value in lung cancer. Eur J Cardiothorac Surg 2000;18:425–8.

    Article  PubMed  CAS  Google Scholar 

  41. Yankelevitz DF, Henschke CI. Does 2-year stability imply that pulmonary nodules are benign? AJR Am J Roentgenol 1997;168:325–8.

    PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

All authors have no direct or indirect financial interest in the products under investigation or subject matter discussed in this manuscript. This manuscript is currently not under simultaneous consideration by any other publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Grgic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental data

(DOC 4167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grgic, A., Yüksel, Y., Gröschel, A. et al. Risk stratification of solitary pulmonary nodules by means of PET using 18F-fluorodeoxyglucose and SUV quantification. Eur J Nucl Med Mol Imaging 37, 1087–1094 (2010). https://doi.org/10.1007/s00259-010-1387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1387-3

Keywords

Navigation