Skip to main content
Log in

Entropy criteria applied to pattern selection in systems with free boundaries

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The steady state differential or integral equations which describe patterned dissipative structures, typically to be identified with first order phase transformation morphologies like isothermal pearlites, are invariably degenerate in one or more order parameters (the lamellar spacing in the pearlite case). It is often observed that a different pattern is attained at the steady state for each initial condition (the hysteresis or metastable case). Alternatively, boundary perturbations and internal fluctuations during transition up to, or at the steady state, destroy the path coherence. In this case a statistical ensemble of imperfect patterns often emerges which represents a fluctuating but recognizably patterned and unique average steady state. It is cases like cellular, lamellar pearlite, involving an assembly of individual cell patterns which are regularly perturbed by local fluctuation and growth processes, which concern us here. Such weakly fluctuating nonlinear steady state ensembles can be arranged in a thought experiment so as to evolve as subsystems linking two very large mass-energy reservoirs in isolation. Operating on this discontinuous thermodynamic ideal, Onsager’s principle of maximum path probability for isolated systems, which we interpret as a minimal time correlation function connecting subsystem and baths, identifies the stable steady state at a parametric minimum or maximum (or both) in the dissipation rate. This nonlinear principle is independent of the Principle of Minimum Dissipation which is applicable in the linear regime of irreversible thermodynamics. The statistical argument is equivalent to the weak requirement that the isolated system entropy as a function of time be differentiable to the second order despite the macroscopic pattern fluctuations which occur in the subsystem. This differentiability condition is taken for granted in classical stability theory based on the 2nd Law. The optimal principle as applied to isothermal and forced velocity pearlites (in this case maximal) possesses a Le Chatelier (perturbation) Principle which can be formulated exactlyvia Langer’s conjecture that “each lamella must grow in a direction which is perpendicular to the solidification front”. This is the first example of such an equivalence to be experimentally and theoretically recognized in nonlinear irreversible thermodynamics. A further application to binary solidification cells is reviewed. In this case the optimum in the dissipation is a minimum and the closure between theory and experiment is excellent. Other applications in thermal-hydraulics, biology, and solid state physics are briefy described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Lotka:Proc. Natl. Acad. Sci., 1922, pp. 147 ff.

  2. A.J. Lotka:Human Biology, 1945, vol. 17, p. 167.

    Google Scholar 

  3. L. Onsager.Phys. Rev., 1931, vol. 37, p. 405.

    Article  CAS  Google Scholar 

  4. L. Onsager:Phys. Rev., 1931, vol. 38, p. 2265.

    Article  CAS  Google Scholar 

  5. Lord Kelvin:Math. Phys. Papers, 1882, vol. 1, p. 232.

    Google Scholar 

  6. Lord Rayleigh:Proc. Math. Soc. London, 1873, vol. 4, p. 357.

    Google Scholar 

  7. S. R. de Groot:Thermodynamics of Irreversible Processes, North Holland Publishing Company, Amsterdam, 1952, pp. 54, 94 ff.

    Google Scholar 

  8. I. Prigogine:Introduction to Thermodynamics of Irreversible Processes, Charles C. Thomas, Springfield, IL, 1955, pp. 32, 90.

    Google Scholar 

  9. J. S. Kirkaldy: inDecomposition of Austenite by Diffusional Processes, V. F. Zackay and H. I. Aaronson, eds., Interscience Publishers, New York, NY, Discussion by J. W. Cahn and W. W. Mullins, 1962, pp. 123–30.

    Google Scholar 

  10. J. C. Baker and J. W. Cahn: inSolidification, ASM, Metals Park, OH, 1971, p. 52.

    Google Scholar 

  11. G. Nicolis and I. Prigogine:Self-Organization in Nonequilibrium Systems, John Wiley and Sons, New York, NY, 1977.

    Google Scholar 

  12. J. S. Kirkaldy:Can. J. Phys., 1959, vol. 37, p. 739.

    CAS  Google Scholar 

  13. J.S. Kirkaldy:Can. J. Phys., 1960, vol. 38, p. 1343.

    Google Scholar 

  14. J.S. Kirkaldy:Can. J. Phys., 1964, vol. 42, p. 1447.

    CAS  Google Scholar 

  15. J.S. Kirkaldy.Biophys. Jour., 1965, vol. 5, p. 965.

    Article  CAS  Google Scholar 

  16. J.S. Kirkaldy:Biophys. Jour., 1965, vol. 5, p. 981.

    CAS  Google Scholar 

  17. J.W. Cahn:Acta Metall., 1959, vol. 7, p. 18.

    Article  CAS  Google Scholar 

  18. W. A. Tiller:J. Appl. Phys., 1963, vol. 34, p. 3615.

    Article  Google Scholar 

  19. D. B. Chambers:Thermodynamics of Self-Organizing Systems, Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 1973.

    Google Scholar 

  20. L. S. Darken and R. M. Fisher: inDecomposition of Austenite by Diffusional Processes, V. F. Zackay and H.I. Aaronson, eds., Interscience Publishers, New York, NY, 1962, p. 249.

    Google Scholar 

  21. K. A. Jackson and J. D. Hunt:Trans. Met. Soc. AIME, 1966, vol. 236, p. 1129.

    CAS  Google Scholar 

  22. D. Venugopalan:Cellular Instability in Binary Solidification, Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 1983.

    Google Scholar 

  23. J. D. Hunt and K. A. Jackson:Trans. Met. Soc. AIME, 1966, vol. 236, p. 843.

    CAS  Google Scholar 

  24. C. Zener:Trans. AIME, 1946, vol. 167, p. 550.

    Google Scholar 

  25. F. C. Frank and K. E. Puttick:Acta Metall., 1956, vol. 4, p. 206.

    Article  CAS  Google Scholar 

  26. E. L. Koschmieder:Advances in Chemical Physics, 1975, vol. 32, p. 109.

    Article  Google Scholar 

  27. R. Kikuchi:Phy. Rev., 1961, vol. 124, pp. 1682 and 1691.

    Article  CAS  Google Scholar 

  28. D. Venugopalan and J.S. Kirkaldy:Acta Metall., 1984, vol. 32, p. 893.

    Article  CAS  Google Scholar 

  29. A. Münster:Statistical Thermodynamics, Springer-Verlag, Berlin, 1969, pp. 59–62, 396.

    Google Scholar 

  30. J. S. Kirkaldy and R. C. Sharma:Acta Metall., 1980, vol. 28, p. 1009.

    Article  Google Scholar 

  31. M. B. Bever and R. Rocca:Rev. Met., 1951, vol. 48, p. 3.

    Google Scholar 

  32. M. Hillert:Jernkontorets Ann., 1957, vol. 141, p. 757.

    CAS  Google Scholar 

  33. S. Strassler and W. R. Schneider:Phys. Cond. Matter, 1974, vol. 17, p. 153.

    Article  Google Scholar 

  34. V. Datye and J. S. Langer:Phys. Rev. B, 1981, vol. 24, p. 4155.

    Article  CAS  Google Scholar 

  35. B. E. Sundquist:Acta Metall., 1968, vol. 16, p. 1413.

    Article  CAS  Google Scholar 

  36. J. S. Kirkaldy.Scripta Met., 1968, vol. 2, p. 565.

    Article  Google Scholar 

  37. M. P. Puls and J. S. Kirkaldy:Metall. Trans., 1972, vol. 3, p. 2777. 38. J. W. Cahn: private communication in Ref. 21.

    CAS  Google Scholar 

  38. S. O’Hara and A. Hellawell:Scripta Met., 1968, vol. 2, p. 107.

    Article  Google Scholar 

  39. G. F. Boiling and R. H. Richman:Metall. Trans., 1970, vol. 1, p. 2095.

    Article  Google Scholar 

  40. J. S. Kirkaldy:Scripta Met., 1981, vol. 15, p. 1255.

    Article  CAS  Google Scholar 

  41. J. D. Verhoeven and D. D. Pearson:Metall. Trans. A, 1984, vol. 15A, p. 1047.

    CAS  Google Scholar 

  42. J. S. Langer:Phys. Rev. Letts., 1980, vol. 44, p. 1023.

    Article  CAS  Google Scholar 

  43. J. S. Langer: Univ. of California at Santa Barbara, private communication, 1981.

  44. M. Bénard:Ann. Chim. Phys., 1901, vol. 23, p. 62.

    Google Scholar 

  45. T. D. Hamill and K. J. Baumeister:Proc. Third International Heat Transfer Congress, A.I.Ch.E., 1966, IV, p. 59.

  46. W. V. R. Malkus:Proc. Roy. Soc., 1955, vol. A225, p. 196.

    Google Scholar 

  47. G. W.Paltridge. Quart. Jour. Roy. Met. Soc., 1981, vol. 107, p. 531.

    Article  Google Scholar 

  48. Y. Sawada:Prog. Theor. Phys., 1981, vol. 66, p. 68.

    Article  Google Scholar 

  49. V. S. Bagaev, L. V. Keldysh, N. N. Sibel’din, and V. A. Tsvetkov:Zh. Eksp. Teor. Fiz., 1976, vol. 70, p. 702. [Sov. Phys.-JETP, 1976, vol. 43, p. 362.]

    CAS  Google Scholar 

  50. J. S. Kirkaldy and L. R. B. Patterson:Physical Review A, 1983, vol. 28, p. 28.

    Article  Google Scholar 

  51. H. T. Odum:Systems Ecology, John Wiley and Sons, New York, NY, 1983.

    Google Scholar 

  52. B. D. H. Tellegen:Philips Res. Rep., 1952, vol. 7, p. 259.

    Google Scholar 

  53. N. Ridley:Metall. Trans. A, 1984, vol. 15A, p. 1019.

    CAS  Google Scholar 

  54. K. Hashiguchi and J. S. Kirkaldy:Scandinavian Jour. of Met., 1984, vol. 13, p. 240.

    CAS  Google Scholar 

  55. I. Prigogine and J. M. Wiame:Experientia, 1946, vol. 2, p. 451.

    Article  CAS  Google Scholar 

  56. I. Jin and G.R. Purdy:J. Crystal Growth, 1974, vol. 23, p. 29.

    Article  CAS  Google Scholar 

  57. B. Billia and L. Capella:J. Crystal Growth, 1978, vol. 44, p. 235.

    Article  CAS  Google Scholar 

  58. J. S. Kirkaldy:Scripta Met., 1980, vol. 14, p. 739.

    Article  Google Scholar 

  59. D. Venugopalan and J.S. Kirkaldy:Scripta Met., 1982, vol. 16, p. 1183.

    Article  CAS  Google Scholar 

  60. D. Venugopalan and J.S. Kirkaldy:Acta Metall., 1984, vol. 32, p. 893.

    Article  CAS  Google Scholar 

  61. J. S. Kirkaldy and D. Venugopalan: McMaster University, Hamilton, ON, Canada, unpublished research, 1984.

  62. W. W. Mullins and R. F. S. Sekerka:J. Appl. Phys., 1964, vol. 35, p. 444.

    Article  Google Scholar 

  63. D. J. Wollkind and L. A. Segel:Trans. Roy. Soc. London, 1970, vol. 268, p. 351.

    Article  CAS  Google Scholar 

  64. G. Dee and R. Mathur:Phys. Rev. B, 1983, vol. 27, p. 7073.

    Article  CAS  Google Scholar 

  65. K. C. Russell:Advances in Colloid and Interface Science, 1980, vol. 13, p. 205.

    Article  CAS  Google Scholar 

  66. L. S. Darken and R. W. Gurry:Physical Chemistry of Metals, McGraw-Hill, New York, NY, 1953, p. 311.

    Google Scholar 

  67. J. W. Cahn and W. C. Hagel: inDecomposition of Austenite by Diffusional Processes, V. F. Zackay and H. I. Aaronson, eds., Interscience Publishers, New York, NY, 1962, p. 131.

    Google Scholar 

  68. G. J. Shiflet: University of Virginia, Department of Materials Science, Charlottesville, VA, unpublished research, 1983.

  69. J. S. Kirkaldy:Scripta Met., 1980, vol. 14, p. 531.

    Article  Google Scholar 

  70. D. H. Gage, M. Schiffer, S. J. Cline, and W. C. Reynolds: inNon-Equilibrium Thermodynamics; Variational Techniques and Stability, R.J. Donnelley, R. Herman, and I. Prigogine, eds., University of Chicago Press, 1966, p. 283.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was part of the Symposium on Establishment of Microstructural Spacing during Dendritic and Cooperative Growth,Metall. Trans. A, 1984, vol. 15A, pp. 961–1063.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkaldy, J.S. Entropy criteria applied to pattern selection in systems with free boundaries. Metall Trans A 16, 1781–1797 (1985). https://doi.org/10.1007/BF02670366

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670366

Keywords

Navigation