Skip to main content

Daptomycin and Related Lipopeptides Produced by Fermentation, Chemical Modification, and Combinatorial Biosynthesis

  • Chapter
  • First Online:
Antimicrobials
  • 3019 Accesses

Abstract

Among the structurally related ten-membered ring acidic cyclic lipopeptide antibiotics, daptomycin was the first to gain FDA approval in the USA. Daptomycin and related lipopeptides require Ca2+ for activity, and Ca2+-bound daptomycin acts as a cationic peptide and interacts with the negatively charged phosphotidylglycerol (PG) in the cytoplasmic membrane to trigger its antibacterial effects. Mutants of Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, and Bacillus subtilis, which display incremental increases in resistance to daptomycin, have mutations in genes that cause reductions in the negative charge on the membrane or thickening of cell walls. Daptomycin was approved to treat skin and skin structure infections caused by Gram-positive pathogens, and bacteremia including right-sided endocarditis caused by S. aureus, but has not been approved to treat Streptococcus pneumoniae pneumonia. Many derivatives of A21978C (containing the core peptide of daptomycin) and A54145 have been generated by chemical modification or by combinatorial biosynthesis to identify antibiotics superior to daptomycin for the treatment of community-acquired pneumonia (CAP). Several compounds had antibacterial activity superior to daptomycin, but were not as active as vancomycin in a mouse model for pneumonia. Lipopeptide CB-813,315, however, was more active than daptomycin and vancomycin against Clostridium difficile in vitro, and is currently undergoing clinical trials to treat C. difficile-associated diarrhea (CDAD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander D, Davies J, Miao V, Baltz RH (2004) Identification of a resistance gene within the daptomycin biosynthetic gene cluster from Streptomyces roseosporus. In: Abstracts of the joint 8th symposium on genetics and molecular biology of industrial microorganisms (GMBIM), and 8th international conference on the biotechnology of microbial products (BMP), San Diego, CA, 14–18 November

    Google Scholar 

  • Alexander DC, Rock J, He X, Miao V, Brian P, Baltz RH (2010) Development of genetic system for lipopeptide combinatorial biosynthesis in Streptomyces fradiae and heterologous expression of the A54145 biosynthetic gene cluster. Appl Environ Microbiol 76:6877–6887

    Article  PubMed  CAS  Google Scholar 

  • Alexander DC, Rock J, Gu J-Q, Mascio C, Chu M, Brian P, Baltz RH (2011) Production of novel lipopeptide antibiotics related to A54145 by Streptomyces fradiae mutants blocked in biosynthesis of modified amino acids and assignment of lptI, lptK and lptL gene functions. J Antibiot 64:79–87

    Article  PubMed  CAS  Google Scholar 

  • Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38:1673–1681

    Article  PubMed  CAS  Google Scholar 

  • Arias CA, Panesso D, McGrath DM et al (2011) Genetic basis for in vivo daptomycin resistance in enterococci. N Eng J Med 365:892–900

    Article  CAS  Google Scholar 

  • Ball LJ, Goult CM, Donarski JA, Micklefield J, Ramesh V (2004) NMR structure determination and calcium binding effects of lipopeptide antibiotic daptomycin. Org Biomol Chem 2:1872–1878

    Article  PubMed  CAS  Google Scholar 

  • Baltz RH (2005) Natural product discovery and development at Eli Lilly and Company: one scientist’s view. SIM News 55:5–16

    Google Scholar 

  • Baltz RH (2008) Biosynthesis and genetic engineering of lipopeptide antibiotics related to daptomycin. Curr Top Med Chem 8:618–638

    Article  PubMed  CAS  Google Scholar 

  • Baltz RH (2009a) Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr Opin Chem Biol 13:144–151

    Article  PubMed  CAS  Google Scholar 

  • Baltz RH (2009b) Chapter 20. Biosynthesis and genetic engineering of lipopeptides in Streptomyces roseosporus. Methods Enzymol 458:511–531

    Article  PubMed  CAS  Google Scholar 

  • Baltz RH (2010a) Daptomycin. In: Buss AD, Butler MS (eds) Natural product chemistry for drug discovery. RSC Publishing, Cambridge, pp 395–409

    Google Scholar 

  • Baltz RH (2010b) Genomics and the ancient origins of the daptomycin biosynthetic gene cluster. J Antibiot 63:506–511

    Article  PubMed  CAS  Google Scholar 

  • Baltz RH (2010c) Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 37:759–772

    Article  PubMed  CAS  Google Scholar 

  • Baltz RH, Miao V, Wrigley SW (2005) Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep 22:717–741

    Article  PubMed  CAS  Google Scholar 

  • Baltz RH, Nguyen KT, Alexander DC (2010a) Genetic engineering of acidic lipopeptide antibiotics. In: Baltz RH, Davies JE, Demain AL (eds) Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington DC, pp 391–410

    Google Scholar 

  • Baltz RH, Nguyen KT, Alexander DC (2010b) Reprogramming daptomycin and A54145 biosynthesis to produce novel lipopeptide antibiotics. In: Yeh W-K, Yang H-C, McCarty JR (eds) Enzyme technologies: metagenomics, evolution, biocatalysis, and biosynthesis. Wiley, Hoboken, pp 285–308

    Google Scholar 

  • Bastian S, Brossier F, Wichlacz C, Jarlier V, Veziris N (2010) Daptomycin is not active against rapidly growing mycobacteria. J Med Microbiol 59:135–136

    Article  PubMed  Google Scholar 

  • Belcheva A, Golemi-Kotra D (2008) A close-up view of the VraSR two-component system: a mediator of Staphylococcus aureus response to cell wall damage. J Biol Chem 283:12354–12364

    Article  PubMed  CAS  Google Scholar 

  • Bertsche U, Weidenmaier C, Kuehner D, Yang S-J, Baur S, Wanner S, Francois P, Schrenzel J, Yeaman MR, Bayer AS (2011) Correlation of daptomycin resistance in a clinical Staphylococcus aureus strain with increased cell wall teichoic acid production and D-alanylation. Antimicrob Agents Chemother 55:3922–3928

    Google Scholar 

  • Boeck LD, Wetzel RW (1990) A54145, a new lipopeptide antibiotic complex: factor control through precursor directed biosynthesis. J Antibiot 43:607–615

    Article  PubMed  CAS  Google Scholar 

  • Boeck LD, Papiska HR, Wetzel RW, Mynderse JS, Fukuda DS, Mertz FP, Berry DM (1990) A54145, a new lipopeptide antibiotic complex: discovery, taxonomy, fermentation and HPLC. J Antibiot 43:587–593

    Article  PubMed  CAS  Google Scholar 

  • Boeck LD, Fukuda DS, Abbott BJ, Debono M (1988) Deacylation of A21978C, an acidic lipopeptide antibiotic complex, by Actinoplanes utahensis. J Antibiot 41:1085–1092

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Silhavy TJ (2002) Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol Microbiol 45:1289–1302

    Article  PubMed  CAS  Google Scholar 

  • Camargo IL, Neoh H-M, Cui L, Hiramatsu K (2008) Serial daptomycin selection generates daptomycin-nonsusceptible Staphylococcus aureus strains with heterogenous vancomycin-intermediate phenotype. Antimicrob Agents Chemother 52:4289–4299

    Article  PubMed  CAS  Google Scholar 

  • Chimalakonda G, Ruiz N, Chng SS, Garner RA, Kahne D, Silhavy TJ (2011) Lipoprotein LptE is required for the assembly of LptD by the β-barrel assembly machine in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 108:2492–2497

    Article  PubMed  CAS  Google Scholar 

  • Citron DM, Tyrrell KL, Merriam V, Goldstein EJC (2012) In vitro activity of CB-183,315, vancomycin and metronidazole against 556 strains of Clostridium difficile, 445 other intestinal anaerobes and 56 Enterobacteriaceae species. Antimicrob Agents Chemother 56:1613–1615

    Article  PubMed  CAS  Google Scholar 

  • Coëffet-Le Gal M-F, Thurson L, Rich P, Miao V, Baltz RH (2006) Complementation of daptomycin dptA and dptD deletion mutations in-trans and production of hybrid lipopeptide antibiotics. Microbiology 152:2993–3001

    Article  PubMed  Google Scholar 

  • Counter FT, Allen NE, Fukuda DS, Hobbs JN, Ott J, Ensminger PW, Mynderse JS, Preston DA, Wu CY (1990) A54145 a new lipopeptide antibiotic complex: microbiological evaluation. J Antibiot 43:616–622

    Article  PubMed  CAS  Google Scholar 

  • Cotroneo N, Harris R, Perlmutter N, Beveridge T, Silverman JA (2008) Daptomycin exerts bactericidal activity without lysis of Staphylococcus aureus. Antimicrob Agents Chemother 52:2223–2225

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Isii T, Fukuda M et al (2010) An rpoB mutation confers dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus. Antimicrob Agents Chemother 54:5222–5233

    Article  PubMed  CAS  Google Scholar 

  • D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377

    Article  PubMed  Google Scholar 

  • D’Costa VM, Mukhtar TA, Patel T, Koteva K, Waglechner N, Hughes DW, Wright GD, De Pascale G (2012) Inactivation of the lipopeptide antibiotic daptomycin by hydrolytic mechanisms. Antimicrob Agents Chemother 56:757–764

    Article  PubMed  CAS  Google Scholar 

  • De Siervo AJ (1969) Alterations in the phospholipid composition of Escherichia coli B during growth at different temperatures. J Bacteriol 100:1342–1349

    PubMed  Google Scholar 

  • Debono M, Barnhart M, Carrell CB, Hoffmann JA, Occolowitz JL, Abbott BJ, Fukuda DS, Hamill RL, Biemann K, Herlihy WC (1987) A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. J Antibiot 40:761–777

    Article  PubMed  CAS  Google Scholar 

  • Debono M, Abbott BJ, Molloy RM, Fukuda DS, Hunt AH, Daupert VM, Counter FT, Ott JL, Carrell CB, Howard LC, Boeck LD, Hamill RL (1988) Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032). J Antibiot 41:1093–1105

    Google Scholar 

  • Dengler V, Meier PS, Heusser R, Berger-Bachi B, McCallum N (2011) Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics. BMC Microbiol 11:16

    Article  PubMed  CAS  Google Scholar 

  • Dong M-Y, Chang T-W, Gorbach SL (1987) Treatment of Clostridium difficile colitis in hamsters with a lipopeptide antibiotic, LY146032. Antimicrob Agents Chemother 31:1135–1136

    Article  PubMed  CAS  Google Scholar 

  • Drucker DB, Wardle HM, Boote V (1996) Phospholipid profiles of Clostridium difficile. J Bacteriol 178:5844–5846

    PubMed  CAS  Google Scholar 

  • Dubrac S, Boneca IG, Poupel O, Msadek T (2007) New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol 189:8257–8269

    Article  PubMed  CAS  Google Scholar 

  • Dubrak S, Bisicchia P, Devine KM, Msadek T (2008) A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol 70:1307–1322

    Article  CAS  Google Scholar 

  • Dugourd D, Yang H, Elliott M, Siu R, Clement JJ, Straus SK, Hancock REW, Rubinchik E (2011) Antimicrobial properties of MX-2401, an expanded-spectrum lipopeptide active in the presence of lung surfactant. Antimicrob Agents Chemother 55:3720–3728

    Article  PubMed  CAS  Google Scholar 

  • Eggert US, Ruiz N, Falcone BV, Branstrom AA, Goldman RC, Silhavy TJ, Kahne D (2001) Genetic basis for activity differences between vancomycin and glycolipid derivatives of vancomycin. Science 294:361–364

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein BI, Oleson FB Jr, Baltz RH (2010) Daptomycin: from the mountain to the clinic, with the essential help of Francis Tally, MD. Clin Inf Dis 50:S10–S15

    Article  CAS  Google Scholar 

  • Ernst CM, Peschel A (2011) Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Mol Microbiol 80:290–299

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Yang S-J, Bayer AS et al (2011) Daptomycin resistance mechanisms in clinically derived Staphylococcus aureus assessed by a combined transcriptomics and proteomics approach. J Antimicrob Chemother 66:1696–1711

    Article  PubMed  CAS  Google Scholar 

  • Fowler VG, Boucher HW, Corey GR et al (2006) Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355:653–655

    Article  PubMed  CAS  Google Scholar 

  • Friedman L, Alder JD, Silverman JA (2006) Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother 50:2137–2145

    Article  PubMed  CAS  Google Scholar 

  • Fukuda DS, Du Bus RH, Baker PJ, Berry DM, Mynderse JS (1990a) A54145, a new lipopeptide antibiotic complex: isolation and characterization. J Antibiot 43:594–600

    Article  PubMed  CAS  Google Scholar 

  • Fukuda DS, Debono M, Molloy RM, Mynderse JS (1990b) A54145, a new lipopeptide antibiotic complex: microbial and chemical modification. J Antibiot 43:601–606

    Article  PubMed  CAS  Google Scholar 

  • Fukushima T, Szurmant H, Kim E-J, Perego M, Hoch JA (2008) A sensor histidine kinase co-ordinates cell wall architecture with cell division in Bacillus subtilis. Mol Microbiol 69:621–632

    Article  PubMed  CAS  Google Scholar 

  • Fukushima T, Furihata I, Emmins R, Daniel RA, Hoch JA, Szurmant H (2011) A role for the essential YycG sensor histidine kinase in sensing cell division. Mol Microbiol 79:503–522

    Article  PubMed  CAS  Google Scholar 

  • Gardete S, Wu SW, Gill S, Tomasz A (2006) Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus. Antimicrob Agents Chemother 50:3424–3434

    Article  PubMed  CAS  Google Scholar 

  • Goldstein EJC, Citron DM, Merriam CV, Warren YA, Tyrrell KL, Fernandez HT (2004) In vitro activities of the new semisynthetic glycopeptides televancin (TD-6424), vancomycin, daptomycin, linezolid, and four comparator agents against anaerobic gram-positive species and Corynebacterium spp. Antimicrob Agents Chemother 48:2149–2152

    Article  PubMed  CAS  Google Scholar 

  • Grünewald J, Seiber SA, Mahlert C, Linne U, Marahiel MA (2004) Synthesis and derivatization of daptomycin: a chemoenzymatic route to acidic lipopeptide antibiotics. J Am Chem Soc 126:17025–17031

    Article  PubMed  CAS  Google Scholar 

  • Hachmann A-B, Angert ER, Helmann JD (2009) Genetic analysis of factors affecting susceptibility of Bacillus subtilis to daptomycin. Antimicrob Agents Chemother 53:1598–1609

    Article  PubMed  CAS  Google Scholar 

  • Hachmann AB, Sevim E, Gaballa A, Popham DL, Antelmann H, Helmann JD (2011) Reduction in membrane phosphatidylglycerol content leads to daptomycin resistance in Bacillus subtilis. Antimicrob Agents Chemother 55:4326–4337

    Article  PubMed  CAS  Google Scholar 

  • Hill J, Siedlecki J, Parr I et al (2003) Synthesis and biological activity of N-acylated ornithine analogues of daptomycin. Bioorg Med Chem Lett 13:4187–4191

    Article  PubMed  CAS  Google Scholar 

  • Hobbs JK, Miller K, O’Neill AJ, Chopra I (2008) Consequences of daptomycin-mediated membrane damage in Staphylococcus aureus. J Antimicrob Chemother 62:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Hojati Z, Milne C, Harvey B et al (2002) Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol 9:1175–1187

    Article  PubMed  CAS  Google Scholar 

  • Hosted TJ, Baltz RH (1997) Use of rpsL for dominance selection and gene replacement in Streptomyces roseosporus. J Bacteriol 179:180–186

    PubMed  CAS  Google Scholar 

  • Howden BP, McEvoy CRE, Allen DL et al (2011) Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog 7:e1002359

    Article  PubMed  CAS  Google Scholar 

  • Huber FM, Pieper RL, Tietz AJ (1988) The formation of daptomycin by supplying decanoic acid to Streptomyces roseosporus cultures producing the antibiotic complex A21978C. J Biotechnol 7:283–292

    Article  CAS  Google Scholar 

  • Jansen A, Türck M, Szekat C, Nagel M, Clever I, Bierbaum G (2007) Role of insertion elements and yycFG in the development of decreased susceptibility to vancomycin in Staphylococcus aureus. Int J Med Microbiol 297:205–215

    Article  PubMed  CAS  Google Scholar 

  • Jones T, Yeaman MR, Sakoulas G, Yang S-J, Procter RA, Sahl H-G, Schrenzel J, Xiong YQ, Bayer AS (2008) Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother 52:269–278

    Google Scholar 

  • Julian K, Kosowska-Shick K, Whitener C, Roos M, Labishinski H, Rubio A, Parent L, Ednie L, Koeth L, Bogdanovich T, Applebaum PC (2007) Characterization of a daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus strain in a patient with endocarditis. Antimicrob Agents Chemother 51:3445–3448

    Google Scholar 

  • Jung D, Rozek A, Oken M, Hancock RE (2004) Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol 11:949–957

    Article  PubMed  CAS  Google Scholar 

  • Jung D, Powers JP, Straus SK, Hancock REW (2008) Lipid-specific binding of the calcium-dependent antibiotic daptomycin leads to changes in lipid polymorphism of model membranes. Chem Phys 154:120–128

    CAS  Google Scholar 

  • Kikuchi S, Shibuta I, Matsumoto K (2000) Viability of an Escherichia coli pgsA null mutant lacking detectable phosphatidylglycerol and cardiolipin. J Bacteriol 182:371–376

    Article  PubMed  CAS  Google Scholar 

  • Kirst HA, Thompson DG, Nicas TI (1998) Historical yearly usage of vancomycin. Antimicrob Agents Chemother 42:1303–1304

    PubMed  CAS  Google Scholar 

  • Kopp F, Grünewald J, Mahlert C, Marahiel MA (2006) Chemoenzymatic design of acidic lipopeptide hybrids: new insights into the structure-activity relationships of daptomycin and A54145. Biochemistry 45:10474–10481

    Article  PubMed  CAS  Google Scholar 

  • Kosowska-Shick K, Clark C, Pankuch GA, McGhee P, Dewasse B, Beachel L, Applebaum PC (2009) Activity of televancin against staphylococci and enterococci determined by MIC and resistance selection. Antimicrob Agents Chemother 53:4217–4224

    Article  PubMed  CAS  Google Scholar 

  • Kreuzman AJ, Hodges RL, Swartling JR, Pohl TE, Ghag SK, Baker PJ, McGilvray D, Yeh WK (2000) Membrane-associated echinocandin B deacylase of Actinoplanes utahensis: purification, characterization, heterologous cloning and enzymatic deacylation reaction. J Ind Microbiol Biotechnol 24:1730180

    Google Scholar 

  • Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K (2003) Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49:807–821

    Article  PubMed  CAS  Google Scholar 

  • Lai CC, Tan CK, Lin SH, Liao CH, Chou CH, Hsu HL, Huang YT, Hsueh PR (2009) Comparative in vitro activities of nemonoxicin, doripenem, tigecycline and 16 other antimicrobials against Nocardia braziensis, Nocardia asteroides and unusual Nocardia species. J Antimicrob Chemother 64:73–78

    Article  PubMed  CAS  Google Scholar 

  • Mehta S, Cuirolo AX, Plata KB, Riosa S, Silverman JA, Rubio A, Rosato RR, Rosato AE (2012) VraSR two-component regulatory system contributes to mprF-mediated decreased susceptibility to daptomycin in in vivo-selected clinical strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 56:92–102

    Article  PubMed  CAS  Google Scholar 

  • Miao V, Coëffet-LeGal M-F, Brian P, Brost R, Penn J, Whiting A, Martin S, Ford R, Parr I, Bouchard M, Silva CJ, Wrigley SK, Baltz RH (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151:1507–1523

    Article  PubMed  CAS  Google Scholar 

  • Miao V, Brost R, Chapple J, She K, Coëffet-Le Gal M-F, Baltz RH (2006a) The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae. J Ind Microbiol Biotechnol 33:129–140

    Article  PubMed  CAS  Google Scholar 

  • Miao V, Coëffet-Le Gal M-F, Nguyen K, Brian P, Penn J, Whiting A, Steele J, Kau D, Martin S, Ford R, Gibson T, Bouchard M, Wrigley SK, Baltz RH (2006b) Genetic engineering in Streptomyces roseoporus to produce hybrid lipopeptide antibiotics. Chem Biol 13:269–276

    Article  PubMed  CAS  Google Scholar 

  • Mishra NN, Yang SJ, Sawa A, Rubio A, Nast CC, Yeaman MR, Bayer AS (2009) Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:2312–2318

    Article  PubMed  CAS  Google Scholar 

  • Mishra NN, McKinnell J, Yeaman MR, Rubio A, Nast CC, Chen L, Kreiswirth BN, Bayer AS (2011) In vitro cross-resistance to daptomycin and host defense cationic antimicrobial peptides in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother 55:4012–4018

    Google Scholar 

  • Moise PA, North D, Steenbergen JN, Sakoulas G (2009) Susceptibility relationship between vancomycin and daptomycin in Staphylococcus aureus: facts and assumptions. Lancet Infect Dis 9:617–624

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay K, Whitmore W, Xiong YQ et al (2007) In vitro susceptibility of Staphylococcus aureus to thrombin-induced platelet microbicidal protein-1 (tPMP-1) is influenced by cell membrane phospholipid composition and asymmetry. Microbiology 153:1187–1197

    Article  PubMed  CAS  Google Scholar 

  • Muraih JK, Pearson A, Silverman J, Palmer M (2011) Oligomerization of daptomycin on membranes. Biochim Biophys Acta 1808:1154–1160

    Article  PubMed  CAS  Google Scholar 

  • Muraih JK, Harris J, Taylor SD, Palmer M (2012) Characterization of daptomycin oligomerization with perylene excimer fluorescence: stoichiometric binding of phosphatidylglycerol triggers oligomer formation. Biochim Biophys Acta 1818:1154–1160

    Google Scholar 

  • Murthy MH, Olson ME, Wickert RW, Fey PD, Jalali Z (2008) Daptomycin non-susceptible meticillin-resistant Staphylococcus aureus USA 300 isolate. J Med Microbiol 57:1036–1038

    Article  PubMed  Google Scholar 

  • Muthaiyan A, Silverman JA, Jayaswal RK, Wilkerson BJ (2008) Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization. Antimicrob Agents Chemother 52:980–990

    Article  PubMed  CAS  Google Scholar 

  • Ng W-L, Kasmierczak KM, Winkler ME (2004) Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator. Mol Microbiol 53:1161–1175

    Article  PubMed  CAS  Google Scholar 

  • Nguyen K, Ritz D, Gu J-Q, Alexander D, Chu M, Miao V, Brian P, Baltz RH (2006) Combinatorial biosynthesis of lipopeptide antibiotics related to daptomycin. Proc Natl Acad Sci USA 103:17462–17467

    Article  PubMed  CAS  Google Scholar 

  • Nguyen K, He X, Alexander DC, Li C, Gu J-Q, Mascio C, Van Praagh A, Morton L, Chu M, Silverman JA, Brian P, Baltz RH (2010) Genetically engineered lipopeptide antibiotics related to A54145 and daptomycin with improved properties. Antimicrob Agents Chemother 54:1404–1413

    Article  PubMed  CAS  Google Scholar 

  • Nóren T, Alriksson I, Ã…kerlund T, Burman LG, Unemo M (2010) In vitro susceptibility to 17 antimicrobials of clinical Clostridium difficile isolates collected in 1993-2007 in Sweden. Clin Microbiol Infect 16:1104–1110

    Article  PubMed  Google Scholar 

  • Okada A, Igarashi M, Okajima T et al (2010) Walkmycin B targets WalK (YycG), a histidine kinase essential for bacterial cell growth. J Antibiot 63:89–94

    Article  PubMed  CAS  Google Scholar 

  • Oleson FB Jr, Berman CL, Kirkpatrick JB, Regan KS, Lai JJ, Tally FP (2000) Once-daily dosing in dogs optimizes daptomycin safety. Antimicrob Agents Chemother 44:2948–2953

    Article  PubMed  CAS  Google Scholar 

  • Palmer KL, Daniel A, Hardy C, Silverman J, Gilmore MS (2011) Genetic basis for daptomycin resistance in enterococci. Antimicrob Agents Chemother 55:3345–3356

    Article  PubMed  CAS  Google Scholar 

  • Patel D, Husain M, Vidaillac C, Steed ME, Rybak MJ, Seo SM, Kaatz GW (2011) Mechanisms of in vitro-selected daptomycin-non-susceptiblity in Staphylococcus aureus. Int J Antimicrob Agents 38:442–446

    Article  PubMed  CAS  Google Scholar 

  • Patino H, Stevens C, Louie T et al (2011) Efficacy and safety of lipopeptide CB-183,315 for the treatment of Clostridium difficile infection. In: Abstracts of the 51st interscience conference on antimicrobial agents and chemotherapy, Chicago, IL, 17–20 September

    Google Scholar 

  • Peleg AY, Miyakis S, Ward DV et al (2012) Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus. PLoS ONE 7:e28316

    Article  PubMed  CAS  Google Scholar 

  • Penn J, Li X, Whiting A, Latif M, Gibson T, Silva CJ, Brian P, Davies J, Miao V, Wrigley SK, Baltz RH (2006) Heterologous production of daptomycin in Streptomyces lividans. J Ind Microbiol Biotechnol 33:121–128

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KPM, van Strijp JAG (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Pertel PE, Bernardo P, Fogerty C, Matthews P, Northland R, Benvenuto M, Thorne GM, Luperchio SA, Arbeit RD, Alder J (2008) Effects of prior effective therapy on the efficacy of daptomycin and cephtriaxone for the treatment of community-acquired pneumonia. Clin Infect Dis 46:1142–1151

    Article  PubMed  CAS  Google Scholar 

  • Raad I, Hanna H, Jiang Y, Dvorak T, Reitzel R, Chaiban G, Sherertz R, Hachem R (2007) Comparative activities of daptomycin, linezolid, and tigecycline against catheter-related methicillin-resistant Staphylococcus bacteremic isolates embedded in biofilm. Antimicrob Agents Chemother 51:1656–1660

    Article  PubMed  CAS  Google Scholar 

  • Reipert A, Ehlert K, Kast T, Bierbaum G (2003) Morphological and genetic differences in two isogenic Staphylococcus aureus strains with decreased susceptibilities to vancomycin. Antimicrob Agents Chemother 47:568–576

    Article  PubMed  CAS  Google Scholar 

  • Richardson MA, Kuhstoss S, Huber ML, Ford L, Godfrey O, Turner JR, Rao RN (1990) Cloning of spiramycin biosynthetic genes and their use in constructing Streptomyces ambofaciens mutants defective in spiramycin biosynthesis. J Bacteriol 172:3790–3798

    PubMed  CAS  Google Scholar 

  • Rotondi KS, Gierasch LM (2005) A well-defined amphipathic conformation for the calcium-free cyclic lipopeptide antibiotic, daptomycin, in aqueus solution. Biopolymers 80:374–385

    Article  PubMed  CAS  Google Scholar 

  • Rubinchik E, Schneider T, Elliott M, Scott WRP, Pan J, Ankin C, Yang H, Dugourd D, Müller A, Gries K, Straus SK, Sahl HG, Hancock REW (2011) Mechanism of action and limited cross-resistance of new lipopeptide MX-2401. Antimicrob Agents Chemother 55:2743–2754

    Article  PubMed  CAS  Google Scholar 

  • Rubio A, Conrad M, Haselbeck RJ, Kedar GC, Brown-Driver V, Finn J, Silverman JA (2011) Regulation of mprF antisense RNA restores daptomycin susceptibility to daptomycin-resistant isolates of Staphylococcus aureus. Antimicrob Agents Chemother 55:364–367

    Article  PubMed  CAS  Google Scholar 

  • Rubio A, Moore J, Varaglu M, Conrad M, Chu M, Shaw W, Silverman JA (2012) LC-MS/MS characterization of phospholipid content in daptomycin-susceptible and -resistant isolates of Staphylococcus aureus with mutations in mprF. Mol Membr Biol 29:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sakoulas G, Rose W, Rybak MJ, Pillai S, Alder J, Moellering RC, Eliopoulos GM (2008) Evaluation of endocarditis caused by methicillin-susceptible Staphylococcus aureus developing nonsusceptibility to daptomycin. J Clin Microbiol 46:220–224

    Google Scholar 

  • Sass V, Schneider T, Wilmes M, Körner C, Tossi A, Novikova N, Shamova O, Sahl HG (2010) Human β-defensin 3 inhibits cell wall biosynthesis in staphylococci. Infect Immun 78:2793–2800

    Article  PubMed  CAS  Google Scholar 

  • Schneider T, Sahl H-G (2010) An oldie but goodie – cell wall biosynthesis as antibiotic target pathway. Int J Med Microbiol 300:161–169

    Article  PubMed  CAS  Google Scholar 

  • Schneider T, Gries K, Wiedemann I, Pelzer S, Labischinski H, Sahl HG (2009) The lipopeptide antibiotic Friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate. Antimicrob Agents Chemother 53:1610–1618

    Article  PubMed  CAS  Google Scholar 

  • Scott WRP, Baek S-B, Jung D, Hancock REW, Straus SK (2007) NMR structural studies of the antibiotic lipopeptide daptomycin in DHPC micelles. Biochim Biophys Acta 1768:3116–3146

    Article  PubMed  CAS  Google Scholar 

  • Siedlecki J, Hill J, Parr I et al (2003) Array synthesis of novel lipodepsipeptide. Bioorg Med Chem Lett 13:4245–4249

    Article  PubMed  CAS  Google Scholar 

  • Silverman JA, Perlmutter NG, Shapiro HM (2003) Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 47:2538–2544

    Article  PubMed  CAS  Google Scholar 

  • Silverman JA, Morton LI, Vanpraagh AD, Li T, Alder J (2005) Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J Infect Dis 191:2149–2152

    Article  PubMed  CAS  Google Scholar 

  • Steenbergen JN, Alder J, Thorne GM, Tally FP (2005) Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother 55:283–288

    Article  PubMed  CAS  Google Scholar 

  • Straus SK, Hancock REW (2006) Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta 1758:1215–1223

    Article  PubMed  CAS  Google Scholar 

  • Strieker M, Marahiel MA (2009) The structural diversity of acidic lipopeptide antibiotics. ChemBioChem 10:607–616

    Article  PubMed  CAS  Google Scholar 

  • Szurmant H, Mohan MA, Imus M, Hoch JA (2007) YycH and YycI interact to regulate the essential YycFG two-component system in Bacillus subtilis. J Bacteriol 189:3280–3289

    Article  PubMed  CAS  Google Scholar 

  • Szurmant H, Bu L, Brooks CL, Hoch JA (2008) An essential sensor histidine kinase controlled by transmembrane helix interactions with its auxiliary proteins. Proc Natl Acad Sci U S A 105:5891–5896

    Article  PubMed  CAS  Google Scholar 

  • Tyrrell KL, Citron DM, Warren YA, Fernandez HT, Merriam CV, Goldstein EJC (2006) In vitro activities of daptomycin, vancomycin, and penicillin against Clostridium difficile, C. perfringens, Finegoldia magna, and Propionibacterium acnes. Antimicrob Agents Chemother 50:2728–2731

    Article  PubMed  CAS  Google Scholar 

  • Vértesy L, Ehlers E, Kogler H, Kurz M, Meiwes J, Seibert G, Vogle M, Hammann P (2000) Friulimicins: novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. II. Isolation and structural characterization. J Antibiot 53:816–827

    Google Scholar 

  • Watanabe Y, Cui L, Katayama Y, Kozue K, Hiramatsu K (2011) Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. J Clin Microbiol 49:2680–2684

    Article  PubMed  Google Scholar 

  • Wecke T, Zühlke D, Mäder U et al (2009) Daptomycin versus friulimicin B: in-depth profiling of Bacillus subtilis cell envelope stress response. Antimicrob Agents Chemother 53:1619–1623

    Article  PubMed  CAS  Google Scholar 

  • Winkler ME, Hock JA (2008) Essentiality, bypass, and targeting of YycFG (VicRK) two-component regulatory system in Gram-positive bacteria. J Bacteriol 190:2645–2648

    Article  PubMed  CAS  Google Scholar 

  • Yang S-J, Xiong YQ, Dunman PM, Schrenzel J, Francois P, Pechel A, Bayer AS (2009) Regulation of mprF in daptomycin-nonsusceptible Staphylococcus aureus strains. Antimicrob Agents Chemother 53:2636–2637

    Article  PubMed  CAS  Google Scholar 

  • Yang S-J, Nast CC, Mishra NN, Yeaman MR, Fey PD, Bayer AS (2010) Cell wall thickening is not a universal accompaniment of the daptomycin nonsusceptibility phenotype in Staphylococcus aureus: evidence for multiple resistance mechanisms. Antimicrob Agents Chemother 54:3079–3085

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Baltz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baltz, R.H. (2014). Daptomycin and Related Lipopeptides Produced by Fermentation, Chemical Modification, and Combinatorial Biosynthesis. In: Marinelli, F., Genilloud, O. (eds) Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39968-8_6

Download citation

Publish with us

Policies and ethics