Skip to main content

Algorithmics for the Life Sciences

  • Chapter
  • First Online:
The Power of Algorithms
  • 2119 Accesses

Abstract

The life sciences, in particular molecular biology and medicine, have witnessed fundamental progress since the discovery of “the Double Helix”. A relevant part of such an incredible advancement in knowledge has been possible thanks to synergies with the mathematical sciences, on the one hand, and computer science, on the other. Here we review some of the most relevant aspects of this cooperation, focusing on contributions given by the design, analysis and engineering of fast algorithms for the life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dawkins [25].

  2. 2.

    Hood and Galas [61].

  3. 3.

    Gregory John Chaitin is a well-known mathematician. When he came up with the idea and corresponding research on Algorithmic Information Theory he was only 18 years old and had just graduated from CUNY (City College, New York).

  4. 4.

    Andrey Nikolaevich Kolmogorov was one of the greatest mathematicians of the twentieth century and perhaps that is the reason why this complexity measure carries his name.

  5. 5.

    Claude Shannon is the founder of a mathematical theory of communication that has taken the name of Information Theory. This theory was born after World War II for a project regarding telecommunications networks, but it has had a very wide set of applications also in other fields.

  6. 6.

    The term partition refers to a decomposition of a set of “items” into disjoint subsets, whose union is equal to the entire set.

References

  1. Calin, G.A., Croce, C.: MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 66, 7390–7394 (2006)

    Article  Google Scholar 

  2. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1979)

    Google Scholar 

  3. D’Erchia, A.M., Gissi, C., Pesole, G., Saccone, C., Arnason, U.: The guinea pig is not a rodent. Nature 381, 597–600 (1996)

    Article  Google Scholar 

  4. D’Haeseleer, P.: What are DNA sequence motifs? Nature Biotechnol. 24, 423–425 (2006)

    Article  Google Scholar 

  5. Felsenfeld, G., Groudine, M.: Controlling the double helix. Nature 421, 448–453 (2003)

    Article  Google Scholar 

  6. Ferragina, P., Giancarlo, R., Greco, V., Manzini, G., Valiente, G.: Compression-based classification of biological sequences and structures via the universal similarity metric: experimental assessment. BMC Bioinf. 8, 252 (2007)

    Article  Google Scholar 

  7. Ferro, A., Giugno, R., Pigola, G., Pulvirenti, A., Skripin, D., Bader, M., Shasha, D.: NetMatch: a Cytoscape plugin for searching biological networks. Bioinformatics 23, 910–912 (2007)

    Article  Google Scholar 

  8. Giancarlo, R., Mantaci, S.: I contributi delle scienze matematiche ed informatiche al sequenziamento genomico su larga scala. Bollettino Della Unione Matematica Italiana – Serie A: La Matematica nella Società nella Cultura, 4-A (2001)

    Google Scholar 

  9. Giancarlo, R., Utro, F.: Speeding up the Consensus clustering methodology for microarray data analysis. Algorithms Mol. Biol. 6(1), 1 (2011)

    Article  Google Scholar 

  10. Golub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression. Science 289, 531–537 (1998)

    Google Scholar 

  11. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  12. Gusfield, D.: Suffix trees (and relatives) come of age in bioinformatics. In: Proceedings of the IEEE Computer Society Conference on Bioinformatics, Stanford, USA. IEEE, Los Alamitos (2002)

    Google Scholar 

  13. Hood, L., Galas, D.: The digital code of DNA. Nature 421, 444–448 (2003)

    Article  Google Scholar 

  14. Jones, N.C., Pevzner, P.: An Introduction to Bioinformatics Algorithms. MIT, Cambridge (2004)

    Google Scholar 

  15. Lander, E.S.: The new genomics: global views of biology. Science 274, 536–539 (1996)

    Article  Google Scholar 

  16. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, New York (2008)

    Book  MATH  Google Scholar 

  17. Li, M., Xin, C., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE Trans. Inf. Theory 50, 3250–3264 (2003)

    Article  Google Scholar 

  18. Nature Reviews: The double helix – 50 years. Nature 421 (2003)

    Google Scholar 

  19. Pavesi, G., Mereghetti, P., Mauri, G., Pesole, G.: Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acid Res. 32, W199–W203 (2004)

    Article  Google Scholar 

  20. Pizzi, C., Bortoluzzi, S., Bisognin, A., Coppe, A., Danieli, G.A.: Detecting seeded motifs in DNA sequences. Nucleic Acid Res. 33(15), e135 (2004)

    Article  Google Scholar 

  21. Shamir, R., Sharan, R.: Algorithmic approaches to clustering gene expression data. In: Current Topics in Computational Biology. MIT, Cambridge (2003)

    Google Scholar 

  22. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nature Biotechnol. 24, 427–433 (2006)

    Article  Google Scholar 

  23. Zhang, S., Zhang, X.S., Chen, L.: Biomolecular network querying: a promising approach in systems biology. BMC Syst. Biol. 2(1), 5 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The author is deeply indebted to Luca Pinello and Filippo Utro for helpful discussions and comments about the content of this chapter. Many thanks also to Margaret Gagie for the usual, very competent proofreading and stylistic comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Giancarlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giancarlo, R. (2013). Algorithmics for the Life Sciences. In: Ausiello, G., Petreschi, R. (eds) The Power of Algorithms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39652-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39652-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39651-9

  • Online ISBN: 978-3-642-39652-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics