Skip to main content

0D Band Gap Engineering by MBE Quantum Rings: Fabrication and Optical Properties

  • Chapter
  • First Online:
Physics of Quantum Rings

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In this chapter we show how it is possible to modify the shape and size of InAs on GaAs self assembled quantum dots grown by Molecular Beam Epitaxy (MBE) by introducing a pause during the capping process, also known as partial overgrowth technique (García et al. in Appl. Phys. Lett. 71:2014, 1997; Appl. Phys. Lett. 72:3172, 1998; Granados and García in Appl. Phys. Lett. 82:2401, 2003). Under certain growth-pause capping conditions it is possible to obtain self-assembled quantum rings. The changes in shape and size lead to a modification of the quantum confinement potential and enables the control over fundamental physical properties, such as the optical emission energy from ground or excited states, the magnitude of its fine structure splitting or the sign of its permanent electric dipole moment.

The partial capping technique has played a key role in the engineering of 0D nanostructures with tailor made properties (Michler et al. in Science 290(5500):2282, 2000; Kiravittaya et al. in Rep. Prog. Phys. 72(4):046502, 2009). For example, it has allowed to fabricate a single-photon source that is based on a single self assembled quantum nanostructure embedded in a high-quality factor microcavity structure (Michler et al. in Science 290(5500):2282, 2000). Another example is the possibility to engineer what has been called “the smallest rings of electricity” (see Chap. 2), which unveil novel magnetic properties associated to non-trivial topologies at the nanoscale (Fomin (ed.) in J. Nanoelectron. Optoelectron., vol. 6. American Scientific, 2011) (see Chaps. 2, 4, 14, 17, and 18).

Typically, the formation of uniform and high quality self-assembled quantum dots, requires fixed growing parameters that does not allow to control independently the size, shape and overall density of the ensemble. The partial capping technique allows to have two separate sets of growing parameters, or “control knobs”: one for optimum QD nucleation and another employed for tuning size and shape during partial capping.

It is well known that the accumulated stress during growth of heteroepitaxial materials systems can lead to the self-assembly of quantum dots. But these driving forces are the very same ones responsible for a disassembling process that takes places during the capping process. Embedding an ensemble of elastically relaxed islands into a matrix material with a smaller lattice parameter, puts into play forces that compete dynamically with the capping process. Some examples of these processes are: atomic segregation, material interchange, surface reconstructions changes, stress-induced melting and de-wetting. The islands on the surface (either pyramid-, dome- or lens-shaped), will not preserve intact their structure after being capped. That is why it is so crucial to understand and control in detail the growth and embedding mechanisms of stressed materials. A way to achieve atomic level control of these dissociation mechanisms is to introduce a growth pause during capping to let the system relax.

This chapter focuses on the understanding and control of the capping process of quantum dots, and how under certain capping conditions, it is possible to obtain quantum rings and other nanostructures with quantum properties engineered at will.

We show in situ, real time, accumulated stress and Reflection High Energy Electron Diffraction (RHEED) measurements during InAs on GaAs(001) growth that shed light on the complicated processes that take place during growth and capping of lattice mismatched, and therefore strained, nanostructures. The experiments show that a large amount of indium melts due to the stress accumulation. This highly mobile material plays a key role on the transformations of self assembled nanostructures. For example, this liquid indium strongly segregates during the capping with GaAs, resulting in asymmetrical final soft barrier potentials.

We present a model to explain the formation of quantum rings under certain partial capping conditions which takes into account the competition processes between de-wetting [see Chap. 2], stress-induced melting of InAs and In/Ga exchange/alloying. We present Atomic Force Microscope (AFM) results of nanostructures with different shapes obtained under various partial capping conditions. The role of As2 in the final formation of rings is also discussed.

Changes in the size and shape of the self-assembled nanostructures induced during the partial capping process allows additional 0D band gap engineering that will change accordingly their optical properties. This is based on measurements of continuous wave photoluminescence (PL), time-resolved PL (TRPL) and photoluminescence excitation (PLE) obtained both, in QRs ensembles, and in single quantum rings. Nanostructures capped under different conditions and with different emission energies are compared. As the diameter to height ratio increases, the radiative lifetime and the splitting between ground and excited states decreases leading to sizeable effects in the recombination dynamics as a function of the temperature. We show that a smaller height and a strong In/Ga exchange induced by the partial capping process are responsible of the reduction of the electrical polarizability and the inversion of the permanent dipole moment in these QRs. Finally, the voltage dependent micro-PL and micro-PLE spectra of charge tunable QRs are presented and analyzed in the framework of a central parabolic confinement model including coulomb interactions in the strong confinement regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J.L. Feng, A. Lorke, J. Kotthaus, P. Petroff, Appl. Phys. Lett. 71, 2014 (1997)

    Article  ADS  Google Scholar 

  2. J.M. García, T. Mankad, P.O. Holtz, J. Wellman, P.M. Petroff, Appl. Phys. Lett. 72, 3172 (1998)

    Article  ADS  Google Scholar 

  3. D. Granados, J.M. García, Appl. Phys. Lett. 82, 2401 (2003)

    Article  ADS  Google Scholar 

  4. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, Science 290(5500), 2282 (2000)

    Article  ADS  Google Scholar 

  5. S. Kiravittaya, A. Rastelli, O.G. Schmidt, Rep. Prog. Phys. 72(4), 046502 (2009)

    Article  ADS  Google Scholar 

  6. V.M. Fomin (ed.), A special issue on Modern Advancements in Experimental and Theoretical Physics of Quantum Rings. J. Nanoelectron. Optoelectron. 6 (American Scientific, 2011)

    Google Scholar 

  7. D.J. Eaglesham, M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990)

    Article  ADS  Google Scholar 

  8. D. Leonard, M. Krishnamurthy, C.M. Reaves, S. Denbaars, P. Petroff, Appl. Phys. Lett. 63, 3203 (1993)

    Article  ADS  Google Scholar 

  9. J.Y. Marzin, J. Gerald, A. Izrael, D. Barrier, G. Gastard, Phys. Rev. Lett. 713, 716 (1994)

    Article  ADS  Google Scholar 

  10. R.J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J.M. García, W. Schoenfeld, P.M. Petroff, Nature 405, 926 (2000)

    Article  ADS  Google Scholar 

  11. A. Lorke, R.J. Luyken, A.O. Govorov, J.P. Kotthaus, J.M. García, P.M. Petroff, Phys. Rev. Lett. 84, 2223 (2000)

    Article  ADS  Google Scholar 

  12. R.J. Warburton, C. Schulhauser, D. Haft, C. Schäflein, K. Karrai, J.M. García, W. Schoenfeld, P.M. Petroff, Phys. Rev. B 65, 113303 (2002)

    Article  ADS  Google Scholar 

  13. B. Alén, J. Martínez-Pastor, D. Granados, J.M. García, Phys. Rev. B 72, 155331 (2005)

    Article  ADS  Google Scholar 

  14. N.A.J.M. Kleemans, I.M.A. Bominaar-Silkens, V.M. Fomin, V.N. Gladilin, D. Granados, A.G. Taboada, J.M. García, P. Offermans, U. Zeitler, P.C.M. Christianen, J.C. Maan, J.T. Devreese, P.M. Koenraad, Phys. Rev. Lett. 99, 146808 (2007)

    Article  ADS  Google Scholar 

  15. Y. Aharonov, D. Bohm, Phys. Rev. B 115, 485 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. P.B. Joyce, T.J. Krzyzewski, G.R. Bell, T.S. Jones, S. Malik, D. Childs, R. Murray, Phys. Rev. B 62, 10891 (2000)

    Article  ADS  Google Scholar 

  17. T. Kawai, H. Yonezu, Y. Ogasawara, D. Saito, K. Pak, J. Cryst. Growth 201, 1146 (1999)

    ADS  Google Scholar 

  18. J. Moison, C. Guille, F. Houzay, F. Barthe, M.V. Rompay, Phys. Rev. B 40, 6149 (1989)

    Article  ADS  Google Scholar 

  19. J. Silveira, F. Briones, J. Cryst. Growth 201–202, 113 (1999)

    Article  Google Scholar 

  20. J.M. García, J. Silveira, F. Briones, Appl. Phys. Lett. 77, 409 (2000)

    Article  ADS  Google Scholar 

  21. R. Blossey, A. Lorke, Phys. Rev. E 65, 021603 (2002)

    Article  ADS  Google Scholar 

  22. M. Grundmann, O. Stier, D. Bimberg, Phys. Rev. B 52, 11969 (1995)

    Article  ADS  Google Scholar 

  23. J.P. Silveira, J.M. García, F. Briones, J. Cryst. Growth 227/228, 995 (2001)

    Article  ADS  Google Scholar 

  24. O.B.E. Tournier, K. Ploog, Appl. Phys. Lett. 60, 287 (1992)

    Google Scholar 

  25. J.M. García, L. González, M.U. González, J.P. Silveira, Y. González, F. Briones, J. Cryst. Growth 227–228, 975 (2001)

    Article  Google Scholar 

  26. D. Alonso-Álvarez, J.M. Ripalda, B. Alén, J.M. Llorens, A. Rivera, F. Briones, Adv. Mater. 23, 5256 (2011)

    Article  Google Scholar 

  27. J. Floro, E. Chason, S. Lee, R. Twesten, R. Hwang, L. Freund, J. Electron. Mater. 26, 969 (1997)

    Article  ADS  Google Scholar 

  28. M.U. González, L. González, J.M. García, Y. González, J.P. Silveira, F. Briones, Microelectron. J. 35(1), 13 (2004)

    Article  Google Scholar 

  29. J. Massies, F. Turco, A. Saletes, J. Contour, J. Cryst. Growth 80, 307 (1987)

    Article  ADS  Google Scholar 

  30. D.J. Bottomley, Appl. Phys. Lett. 80, 4747 (2002)

    Article  ADS  Google Scholar 

  31. T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai, T. Tateno, J. Kim, T. Noda, M. Kawabe, K. Sakoda, G. Kido, N. Koguchi, Nano Lett. 5, 425 (2005)

    Article  ADS  Google Scholar 

  32. Q. Xie, P. Chen, A. Madhukar, Appl. Phys. Lett. 65, 2051 (1994)

    Article  ADS  Google Scholar 

  33. A. Lorke, R. Blossey, J.M. García, M. Bichler, G. Abstreiter, Mater. Sci. Eng. B 88, 225 (2002)

    Article  Google Scholar 

  34. P.B. Joyce, T.J. Krzyzewski, G.R. Bell, B.A. Joyce, T.S. Jones, Phys. Rev. B 58, R15981 (1998)

    Article  ADS  Google Scholar 

  35. Y. Horikoshi, H. Yamaguchi, F. Briones, M. Kawashima, J. Cryst. Growth 105, 326 (1990)

    Article  ADS  Google Scholar 

  36. T. Ogura, D. Kishimoto, T. Nishinaga, J. Cryst. Growth 226, 179 (2001)

    Article  ADS  Google Scholar 

  37. D. Granados, J.M. García, T. Ben, S.I. Molina, Appl. Phys. Lett. 86, 071918 (2005)

    Article  ADS  Google Scholar 

  38. P. Offermans, P.M. Koenraad, J.H. Wolter, D. Granados, J.M. García, V.M. Fomin, V.N. Gladilin, J.T. Devreese, Appl. Phys. Lett. 87, 131902 (2005)

    Article  ADS  Google Scholar 

  39. R.A. Römer, R.E. Raikh, Phys. Rev. B 62, 7045 (2000)

    Article  ADS  Google Scholar 

  40. J. Song, S.E. Ulloa, Phys. Rev. B 63, 125302 (2001)

    Article  ADS  Google Scholar 

  41. H. Hu, J.L. Zhu, D.J. Li, J.J. Xiong, Phys. Rev. B 63, 195307 (2001)

    Article  ADS  Google Scholar 

  42. I. Galbraith, F.J. Braid, R.J. Warburton, Phys. Status Solidi A 190, 781 (2002)

    Article  ADS  Google Scholar 

  43. A.O. Govorov, S.E. Ulloa, K. Karrai, R.J. Warburton, Phys. Rev. B 66, 081309 (2002)

    Article  ADS  Google Scholar 

  44. M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel, A. Forchel, Phys. Rev. Lett. 90, 186801 (2003)

    Article  ADS  Google Scholar 

  45. E. Ribeiro, A.O. Govorov, J.G.M.R.W. Carvalho, Phys. Rev. Lett. 92, 126402 (2004)

    Article  ADS  Google Scholar 

  46. I.R. Sellers, V.R. Whiteside, L. Kuskovsky, A.O. Govorov, B.D. McCombe, Phys. Rev. Lett. 100, 136405 (2008)

    Article  ADS  Google Scholar 

  47. A.M. Fischer, J.V.L. Campo, M.E. Portnoi, R.A. Römer, Phys. Rev. Lett. 102, 096405 (2009)

    Article  ADS  Google Scholar 

  48. M.D. Teodoro, J.V.L.R.V.L. Campo, J.G.E.M.E. Marega, Y.G. Gobato, F. Iikawa, M.J.S.P. Brasil, Z.Y. AbuWaar, V.G. Dorogan, Y.I. Mazur, M. Benamara, G.J. Salamo, Phys. Rev. Lett. 104, 086401 (2010)

    Article  ADS  Google Scholar 

  49. F. Ding, N. Akopian, B. Li, U. Perinetti, A. Govorov, F.M. Peeters, C.C.B. Bufon, C. Deneke, Y.H. Chen, A. Rastelli, O.G. Schmidt, V. Zwiller, Phys. Rev. B 82, 075309 (2010)

    Article  ADS  Google Scholar 

  50. J.M. Llorens, C. Trallero-Giner, A. García-Cristobal, A. Cantarero, Phys. Rev. B 64, 035309 (2001)

    Article  ADS  Google Scholar 

  51. O. Voskoboynikov, Y. Li, H.M. Lu, C.F. Shih, C.P. Lee, Phys. Rev. B 66, 155306 (2002)

    Article  ADS  Google Scholar 

  52. J.A. Barker, R.J. Warburton, E.P. O’Reilly, Phys. Rev. B 69, 035327 (2004)

    Article  ADS  Google Scholar 

  53. J.I. Climente, J. Planelles, F. Rajadell, J. Phys. Condens. Matter 17, 1573 (2005)

    Article  ADS  Google Scholar 

  54. J.I. Climente, J. Planelles, W. Jaskólski, Phys. Rev. B 68, 075307 (2003)

    Article  ADS  Google Scholar 

  55. A. Emperador, M. Pi, M. Barranco, A. Lorke, Phys. Rev. B 62, 4573 (2000)

    Article  ADS  Google Scholar 

  56. A. Puente, L. Serra, Phys. Rev. B 63, 125334 (2001)

    Article  ADS  Google Scholar 

  57. H. Hu, G.M. Zhang, J.L. Zhu, J.J. Xiong, Phys. Rev. B 63, 045320 (2001)

    Article  ADS  Google Scholar 

  58. J. Gomis, J. Martínez-Pastor, B. Alén, D. Granados, J. García, P. Roussignol, Eur. Phys. J. B 54, 471 (2006)

    Article  ADS  Google Scholar 

  59. B. Alén, J. Bosch, J. Martínez-Pastor, D. Granados, J.M. García, L. González, Phys. Rev. B 75, 045319 (2007)

    Article  ADS  Google Scholar 

  60. R.J. Warburton, B.T. Miller, C.S. Dürr, C. Bödefeld, K. Karrai, J.P. Kotthaus, G. Medeiros-Ribeiro, P.M. Petroff, S. Huant, Phys. Rev. B 58, 16221 (1998)

    Article  ADS  Google Scholar 

  61. R. Heitz, A. Kalburge, Q. Xie, M. Grundmann, P. Chen, A. Hoffmann, A. Madhukar, D. Bimberg, Phys. Rev. B 57, 9050 (1998)

    Article  ADS  Google Scholar 

  62. J.A. Barker, E.P. O’Reilly, Phys. Rev. B 61, 13840 (2000)

    Article  ADS  Google Scholar 

  63. A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, A. Wieck, Phys. Rev. B 73, 045323 (2006)

    Article  ADS  Google Scholar 

  64. E.E. Mendez, G. Bastard, L.L. Chang, L. Esaki, H. Morkoc, R. Fischer, Phys. Rev. B 26, 7101 (1982)

    Article  ADS  Google Scholar 

  65. O. Stier, M. Grundmann, D. Bimberg, Phys. Rev. B 59, 5688 (1999)

    Article  ADS  Google Scholar 

  66. W. Sheng, J.P. Leburton, Phys. Rev. B 67, 125308 (2003)

    Article  ADS  Google Scholar 

  67. H. Pettersson, R. Warburton, A. Lorke, K. Karrai, J. Kotthaus, J. García, P. Petroff, Physica E 6, 510 (2000)

    Article  ADS  Google Scholar 

  68. R. Oulton, J.J. Finley, A.I. Tartakovskii, D.J. Mowbray, M.S. Skolnick, M. Hopkinson, A. Vasanelli, R. Ferreira, G. Bastard, Phys. Rev. B 68, 235301 (2003)

    Article  ADS  Google Scholar 

  69. J.J. Finley, P.W. Fry, A.D. Ashmore, A. Lemaitre, A.I. Tartakovskii, R. Oulton, D.J. Mowbray, M.S. Skolnick, M. Hopkinson, P.D. Buckle, P.A. Maksym, Phys. Rev. B 63, R161305 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work would not be possible without the support from Spanish projects EPIC-NANOTICS (MINECO TEC2011-29120-C05-04), Q&C Light (CAM S2009ESP-1503), NANOSELF project (TIC2002-04096), Comunidad Autónoma de Madrid (07T/0062/2000), and CICYT (TIC99-1035-C02); and EU project NANOMAT (G5RD-CT-2001-00545).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge M. García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

García, J.M., Alén, B., Silveira, J.P., Granados, D. (2014). 0D Band Gap Engineering by MBE Quantum Rings: Fabrication and Optical Properties. In: Fomin, V. (eds) Physics of Quantum Rings. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39197-2_3

Download citation

Publish with us

Policies and ethics