Skip to main content

Rodent Models of Group 1 Pulmonary Hypertension

  • Chapter
  • First Online:
Pharmacotherapy of Pulmonary Hypertension

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 218))

Abstract

World Health Organization category 1 pulmonary hypertension (PH) is a heterogeneous syndrome in which PH originates in the small pulmonary arteries and is therefore also referred to as pulmonary arterial hypertension (PAH). Common pathophysiologic features include endothelial dysfunction, excessive proliferation and impaired apoptosis of vascular cells, and mitochondrial fragmentation. The proliferation/apoptosis imbalance relates in part to activation of the transcription factors hypoxia-inducible factor-1α (HIF-1α) and nuclear factor of activated T-cells (NFAT) and apoptosis repressors, such as survivin. Perivascular inflammation, disruption of adventitial connective tissue, and a glycolytic metabolic shift in vascular cells and right ventricular myocytes also occur in PAH. There are important genetic and epigenetic predispositions to PAH. This review assesses the fidelity of existing animal models to human PAH. No single model can perfectly recapitulate the many diverse forms of PH in Category 1; however, acceptable models exist. PAH induced by monocrotaline and chronic hypoxia plus SU-5416 (CH+SU) in rats display endothelial dysfunction, proliferation/apoptosis imbalance, and develop the glycolytic metabolic profile of human PAH. Histologically, CH+SU best conforms to PAH in that it develops complex vascular lesions, including plexiform lesions. However, the monocrotaline model can be induced to manifest complex vascular lesions and does manifest the tendency of PAH patients to die of right ventricular (RV) failure. Murine models offer greater molecular certainty than rat models but rarely develop significant PH, have less right ventricular hypertrophy (RVH) and pulmonary artery (PA) remodeling, and are harder to image and catheterize. The use of high fidelity catheterization and advanced imaging (microPET-CT, high frequency echocardiography, high field strength MRI) and functional testing (treadmill) permit accurate phenotyping of experimental models of PAH. Preclinical trial design is an important aspect of testing experimental PAH therapies. The use of multiple complementary models with adequate sample size and trial duration and appropriate endpoints are required for preclinical assessment of experimental PAH therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

5-HTT:

Serotonin transporter

Ang-1:

Angiopoietin-1

BMPR-2:

Bone morphogenetic protein receptor-2

CH + SU:

Chronic hypoxia plus Sugen-5416

CO:

Cardiac output

DRP-1:

Dynamin-related protein 1

ET-1:

Endothelin-1

FHR:

Fawn-Hooded rat

HHV:

Human herpes virus

HIF-1α:

Hypoxia-inducible factor-1α

HIV:

Human immunodeficiency virus

HPV:

Hypoxic pulmonary vasoconstriction

LVEDP:

Left ventricular end diastolic pressure

mPAP:

mean pulmonary artery pressure

MRI:

Magnetic resonance imaging

NFAT:

Nuclear factor of activated T cells

PA:

Pulmonary artery

PAAT:

Pulmonary artery acceleration time

PAH:

Pulmonary arterial hypertension

PASMC:

Pulmonary artery smooth muscle cell

PDH:

Pyruvate dehydrogenase

PDK:

Pyruvate dehydrogenase kinase

PH:

Pulmonary hypertension

PVR:

Pulmonary vascular resistance

RVH:

Right ventricular hypertrophy

SOD2:

Superoxide dismutase 2

SU-5416:

Sugen-5416

TAPSE:

Tricuspid annulus plane systolic excursion

VEGF:

Vascular endothelial growth factor

VTI:

Velocity time integral

References

  • Abe K, Toba M, Alzoubi A et al (2010) Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 121:2747–2754

    Article  PubMed  Google Scholar 

  • Alexander AF, Jensen R (1963) Pulmonary vascular pathology of high altitude-induced pulmonary hypertension in cattle. Am J Vet Res 24:1112–1122

    PubMed  CAS  Google Scholar 

  • Archer S, Rich S (2000) Primary pulmonary hypertension: a vascular biology and translational research “work in progress”. Circulation 102:2781–2791

    Article  PubMed  CAS  Google Scholar 

  • Archer SL, Gebhard R, Levine A, Prigge W, Weir EK (1990) Exacerbation of monocrotaline pulmonary hypertension by a high fat diet: association with increased production lung levels of activated oxygen species. J Vasc Med Biol 2:125–135

    Google Scholar 

  • Archer SL, Souil E, Dinh-Xuan AT et al (1998) Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest 101:2319–2330

    Article  PubMed  CAS  Google Scholar 

  • Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK (2008) Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol 294:H570–H578

    Article  PubMed  CAS  Google Scholar 

  • Archer SL, Marsboom G, Kim GH et al (2010) Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121:2661–2671

    Article  PubMed  CAS  Google Scholar 

  • Ashmore RC, Rodman DM, Sato K et al (1991) Paradoxical constriction to platelets by arteries from rats with pulmonary hypertension. Am J Physiol 260:H1929–H1934

    PubMed  CAS  Google Scholar 

  • Astrup T, Glas P, Kok P (1968) Lung fibrinolytic activity and bovine high mountain disease. Proc Soc Exp Biol Med 127:373–377

    Article  PubMed  CAS  Google Scholar 

  • Bartelds B, Borgdorff MA, Smit-van Oosten A (2011) Differential responses of the right ventricle to abnormal loading conditions in mice: pressure vs. volume load. Eur J Heart Fail 13:1275–1282

    Article  PubMed  CAS  Google Scholar 

  • Beppu H, Kawabata M, Hamamoto T et al (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221:249–258

    Article  PubMed  CAS  Google Scholar 

  • Beppu H, Ichinose F, Kawai N et al (2004) BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol 287:L1241–L1247

    Article  PubMed  CAS  Google Scholar 

  • Beppu H, Lei H, Bloch KD, Li E (2005) Generation of a floxed allele of the mouse BMP type II receptor gene. Genesis 41:133–137

    Article  PubMed  CAS  Google Scholar 

  • Beppu H, Malhotra R, Beppu Y, Lepore JJ, Parmacek MS, Bloch KD (2009) BMP type II receptor regulates positioning of outflow tract and remodeling of atrioventricular cushion during cardiogenesis. Dev Biol 331:167–175

    Article  PubMed  CAS  Google Scholar 

  • Bonnet S, Michelakis ED, Porter CJ et al (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641

    Article  PubMed  CAS  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J et al (2007a) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  PubMed  CAS  Google Scholar 

  • Bonnet S, Rochefort G, Sutendra G et al (2007b) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 104:11418–11423

    Article  PubMed  CAS  Google Scholar 

  • Bras G, Jelliffe DB, Stuart KL (1954) Veno-occlusive disease of liver with nonportal type of cirrhosis, occurring in Jamaica. AMA Arch Pathol 57:285–300

    PubMed  CAS  Google Scholar 

  • Brown DM, Provoost AP, Daly MJ, Lander ES, Jacob HJ (1996) Renal disease susceptibility and hypertension are under independent genetic control in the fawn-hooded rat. Nat Genet 12:44–51

    Article  PubMed  CAS  Google Scholar 

  • Brown DM, Van Dokkum RP, Korte MR et al (1998) Genetic control of susceptibility for renal damage in hypertensive fawn-hooded rats. Ren Fail 20:407–411

    Article  PubMed  CAS  Google Scholar 

  • Buermans HP, Redout EM, Schiel AE et al (2005) Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure. Physiol Genomics 21:314–323

    Article  PubMed  CAS  Google Scholar 

  • Bull TM, Coldren CD, Geraci MW, Voelkel NF (2007) Gene expression profiling in pulmonary hypertension. Proc Am Thorac Soc 4:117–120

    Article  PubMed  CAS  Google Scholar 

  • Burke DL, Frid MG, Kunrath CL et al (2009) Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. Am J Physiol Lung Cell Mol Physiol 297:L238–L250

    Article  PubMed  CAS  Google Scholar 

  • Buus CL, Pourageaud F, Fazzi GE, Janssen G, Mulvany MJ, De Mey JG (2001) Smooth muscle cell changes during flow-related remodeling of rat mesenteric resistance arteries. Circ Res 89:180–186

    Article  PubMed  CAS  Google Scholar 

  • Cahill E, Costello CM, Rowan SC et al (2012) Gremlin plays a key role in the pathogenesis of pulmonary hypertension. Circulation 125:920–930

    Article  PubMed  CAS  Google Scholar 

  • Califf RM, Adams KF, McKenna WJ et al (1997) A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: the Flolan International Randomized Survival Trial (FIRST). Am Heart J 134:44–54

    Article  PubMed  CAS  Google Scholar 

  • Chalifoux LV, Simon MA, Pauley DR, MacKey JJ, Wyand MS, Ringler DJ (1992) Arteriopathy in macaques infected with simian immunodeficiency virus. Lab Invest 67:338–349

    PubMed  CAS  Google Scholar 

  • Chapman ME, Taylor RL, Wideman RF Jr (2008) Analysis of plasma serotonin levels and hemodynamic responses following chronic serotonin infusion in broilers challenged with bacterial lipopolysaccharide and microparticles. Poult Sci 87:116–124

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Guo H, Xu D et al (2012) Left ventricular failure produces profound lung remodeling and pulmonary hypertension in mice: heart failure causes severe lung disease. Hypertension 59(6):1170–1178

    Article  PubMed  CAS  Google Scholar 

  • Chesney CF, Allen JR (1973) Animal model: pulmonary hypertension, cor pulmonale and endocardial fibroelastosis in monocrotaline-intoxicated nonhuman primates. Am J Pathol 70:489–492

    PubMed  CAS  Google Scholar 

  • Christman BW, McPherson CD, Newman JH et al (1992) An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med 327:70–75

    Article  PubMed  CAS  Google Scholar 

  • Chu D, Sullivan CC, Du L et al (2004) A new animal model for pulmonary hypertension based on the overexpression of a single gene, angiopoietin-1. Ann Thorac Surg 77:449–456, discussion 56–57

    Article  PubMed  Google Scholar 

  • Ciuclan L, Bonneau O, Hussey M et al (2011) A novel murine model of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 184:1171–1182

    Article  PubMed  CAS  Google Scholar 

  • Cool CD, Kennedy D, Voelkel NF, Tuder RM (1997) Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Hum Pathol 28:434–442

    Article  PubMed  CAS  Google Scholar 

  • Cool CD, Rai PR, Yeager ME et al (2003) Expression of human herpesvirus 8 in primary pulmonary hypertension. N Engl J Med 349:1113–1122

    Article  PubMed  CAS  Google Scholar 

  • Cowley AW Jr, Liang M, Roman RJ, Greene AS, Jacob HJ (2004) Consomic rat model systems for physiological genomics. Acta Physiol Scand 181:585–592

    Article  PubMed  CAS  Google Scholar 

  • Crosby A, Jones FM, Southwood M et al (2010) Pulmonary vascular remodeling correlates with lung eggs and cytokines in murine schistosomiasis. Am J Respir Crit Care Med 181:279–288

    Article  PubMed  CAS  Google Scholar 

  • Davie NJ, Gerasimovskaya EV, Hofmeister SE et al (2006) Pulmonary artery adventitial fibroblasts cooperate with vasa vasorum endothelial cells to regulate vasa vasorum neovascularization: a process mediated by hypoxia and endothelin-1. Am J Pathol 168:1793–1807

    Article  PubMed  CAS  Google Scholar 

  • Du L, Sullivan CC, Chu D et al (2003) Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med 348:500–509

    Article  PubMed  CAS  Google Scholar 

  • Dumitrascu R, Koebrich S, Dony E et al (2008) Characterization of a murine model of monocrotaline pyrrole-induced acute lung injury. BMC Pulm Med 8:25

    Article  PubMed  CAS  Google Scholar 

  • Eddahibi S, Humbert M, Fadel E et al (2001) Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J Clin Invest 108:1141–1150

    PubMed  CAS  Google Scholar 

  • Elwing J, Panos RJ (2008) Pulmonary hypertension associated with COPD. Int J Chron Obstruct Pulmon Dis 3:55–70

    PubMed  Google Scholar 

  • Epstein RB, Min KW, Anderson SL, Syzek L (1992) A canine model for hepatic venoocclusive disease. Transplantation 54:12–16

    Article  PubMed  CAS  Google Scholar 

  • Fang YH, Piao L, Hong Z et al (2012) Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle. J Mol Med (Berl) 90:31–43

    Article  CAS  Google Scholar 

  • Fijalkowska I, Xu W, Comhair SA et al (2010) Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 176:1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Forfia PR, Fisher MR, Mathai SC et al (2006) Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 174:1034–1041

    Article  PubMed  Google Scholar 

  • Frid MG, Brunetti JA, Burke DL et al (2006) Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol 168:659–669

    Article  PubMed  CAS  Google Scholar 

  • Garcia R, Diebold S (1990) Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res 24:430–432

    Article  PubMed  CAS  Google Scholar 

  • Geraci MW, Moore M, Gesell T et al (2001) Gene expression patterns in the lungs of patients with primary pulmonary hypertension: a gene microarray analysis. Circ Res 88:555–562

    Article  PubMed  CAS  Google Scholar 

  • Ghobadi G, Bartelds B, van der Veen SJ et al (2012) Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension. Thorax 67:334–341

    Article  PubMed  CAS  Google Scholar 

  • Giaid A, Yanagisawa M, Langleben D et al (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328:1732–1739

    Article  PubMed  CAS  Google Scholar 

  • Girgis RE, Li D, Zhan X et al (2003) Attenuation of chronic hypoxic pulmonary hypertension by simvastatin. Am J Physiol Heart Circ Physiol 285:H938–H945

    PubMed  CAS  Google Scholar 

  • Gomez-Arroyo JG, Farkas L, Alhussaini AA et al (2012) The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol 302:L363–L369

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez AM, Smith AP, Emery CJ, Higenbottam TW (1998) The pulmonary hypertensive fawn-hooded rat has a normal serotonin transporter coding sequence. Am J Respir Cell Mol Biol 19:245–249

    Article  PubMed  CAS  Google Scholar 

  • Graham BB, Bandeira AP, Morrell NW, Butrous G, Tuder RM (2010) Schistosomiasis-associated pulmonary hypertension: pulmonary vascular disease: the global perspective. Chest 137:20S–29S

    Article  PubMed  Google Scholar 

  • Greenway S, van Suylen RJ, Du Marchie Sarvaas G et al (2004) S100A4/Mts1 produces murine pulmonary artery changes resembling plexogenic arteriopathy and is increased in human plexogenic arteriopathy. Am J Pathol 164:253–262

    Article  PubMed  CAS  Google Scholar 

  • Grover RF (1965) Pulmonary circulation in animals and man at high altitude. Ann NY Acad Sci 127:632–639

    Article  PubMed  CAS  Google Scholar 

  • Grover RF, Reeves JT (1962) Experimental induction of pulmonary hypertension in normal steers at high altitude. Med Thorac 19:543–550

    PubMed  CAS  Google Scholar 

  • Guignabert C, Izikki M, Tu LI et al (2006) Transgenic mice overexpressing the 5-hydroxytryptamine transporter gene in smooth muscle develop pulmonary hypertension. Circ Res 98:1323–1330

    Article  PubMed  CAS  Google Scholar 

  • Guignabert C, Tu L, Izikki M et al (2009) Dichloroacetate treatment partially regresses established pulmonary hypertension in mice with SM22alpha-targeted overexpression of the serotonin transporter. FASEB J 23:4135–4147

    Article  PubMed  CAS  Google Scholar 

  • Gust R, Schuster DP (2001) Vascular remodeling in experimentally induced subacute canine pulmonary hypertension. Exp Lung Res 27:1–12

    Article  PubMed  CAS  Google Scholar 

  • Hamada S, Nishikawa T, Yokoi N, Serikawa T (1997) TM rats: a model for platelet storage pool deficiency. Exp Anim 46:235–239

    Article  PubMed  CAS  Google Scholar 

  • Hansmann G, Wagner RA, Schellong S et al (2007) Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation 115:1275–1284

    PubMed  CAS  Google Scholar 

  • Hassoun PM, Mouthon L, Barbera JA et al (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 54:S10–S19

    Article  PubMed  CAS  Google Scholar 

  • Herve P, Launay JM, Scrobohaci ML et al (1995) Increased plasma serotonin in primary pulmonary hypertension. Am J Med 99:249–254

    Article  PubMed  CAS  Google Scholar 

  • Hong KH, Lee YJ, Lee E et al (2008) Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118:722–730

    Article  PubMed  CAS  Google Scholar 

  • Hoshikawa Y, Nana-Sinkam P, Moore MD et al (2003) Hypoxia induces different genes in the lungs of rats compared with mice. Physiol Genomics 12:209–219

    PubMed  CAS  Google Scholar 

  • Huang J, Wolk JH, Gewitz MH, Mathew R (2010) Progressive endothelial cell damage in an inflammatory model of pulmonary hypertension. Exp Lung Res 36:57–66

    Article  PubMed  CAS  Google Scholar 

  • Humbert M (2008) Mediators involved in HIV-related pulmonary arterial hypertension. AIDS 22(Suppl 3):S41–S47

    Article  PubMed  CAS  Google Scholar 

  • Humbert M, Sitbon O, Chaouat A et al (2006) Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med 173:1023–1030

    Article  PubMed  Google Scholar 

  • Hyvelin JM, Howell K, Nichol A, Costello CM, Preston RJ, McLoughlin P (2005) Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation. Circ Res 97:185–191

    Article  PubMed  CAS  Google Scholar 

  • Ivy DD, Yanagisawa M, Gariepy CE, Gebb SA, Colvin KL, McMurtry IF (2002) Exaggerated hypoxic pulmonary hypertension in endothelin B receptor-deficient rats. Am J Physiol Lung Cell Mol Physiol 282:L703–L712

    PubMed  CAS  Google Scholar 

  • Ivy DD, McMurtry IF, Colvin K et al (2005) Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension. Circulation 111:2988–2996

    Article  PubMed  CAS  Google Scholar 

  • Janakidevi K, Tiruppathi C, Del Vecchio PJ, Pinheiro JM, Malik AB (1995) Growth characteristics of pulmonary artery smooth muscle cells from fawn-hooded rats. Am J Physiol 268:L465–L470

    PubMed  CAS  Google Scholar 

  • Jones JE, Mendes L, Rudd MA, Russo G, Loscalzo J, Zhang YY (2002) Serial noninvasive assessment of progressive pulmonary hypertension in a rat model. Am J Physiol Heart Circ Physiol 283:H364–H371

    PubMed  CAS  Google Scholar 

  • Kawut SM, Bagiella E, Lederer DJ et al (2011) Randomized clinical trial of aspirin and simvastatin for pulmonary arterial hypertension: ASA-STAT. Circulation 123:2985–2993

    Article  PubMed  CAS  Google Scholar 

  • Kay JM, Harris P, Heath D (1967) Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds. Thorax 22:176–179

    Article  PubMed  CAS  Google Scholar 

  • Kentera D, Susic D, Veljkovic V, Tucakovic G, Koko V (1988) Pulmonary artery pressure in rats with hereditary platelet function defect. Respiration 54:110–114

    Article  PubMed  CAS  Google Scholar 

  • Kim KK, Factor SM (1987) Membranoproliferative glomerulonephritis and plexogenic pulmonary arteriopathy in a homosexual man with acquired immunodeficiency syndrome. Hum Pathol 18:1293–1296

    Article  PubMed  CAS  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  PubMed  CAS  Google Scholar 

  • Knab AM, Bowen RS, Moore-Harrison T, Hamilton AT, Turner MJ, Lightfoot JT (2009) Repeatability of exercise behaviors in mice. Physiol Behav 98:433–440

    Article  PubMed  CAS  Google Scholar 

  • Kugathasan L, Dutly AE, Zhao YD et al (2005) Role of angiopoietin-1 in experimental and human pulmonary arterial hypertension. Chest 128:633S–642S

    Article  PubMed  CAS  Google Scholar 

  • Kuijpers MH, de Jong W (1987) Relationship between blood pressure level, renal histopathological lesions and plasma renin activity in fawn-hooded rats. Br J Exp Pathol 68:179–187

    PubMed  CAS  Google Scholar 

  • Kuijpers MH, Gruys E (1984) Spontaneous hypertension and hypertensive renal disease in the fawn-hooded rat. Br J Exp Pathol 65:181–190

    PubMed  CAS  Google Scholar 

  • Lalich JJ, Merkow L (1961) Pulmonary arteritis produced in rat by feeding Crotalaria spectabilis. Lab Invest 10:744–750

    PubMed  CAS  Google Scholar 

  • Lalich JL, Johnson WD, Raczniak TJ, Shumaker RC (1977) Fibrin thrombosis in monocrotaline pyrrole-induced cor pulmonale in rats. Arch Pathol Lab Med 101:69–73

    PubMed  CAS  Google Scholar 

  • Lane KB, Machado RD, Pauciulo MW et al (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 26:81–84

    Article  PubMed  CAS  Google Scholar 

  • Le Cras TD, Kim DH, Gebb S et al (1999) Abnormal lung growth and the development of pulmonary hypertension in the Fawn-Hooded rat. Am J Physiol 277:L709–L718

    PubMed  Google Scholar 

  • Le Cras TD, Kim DH, Markham NE, Abman AS (2000) Early abnormalities of pulmonary vascular development in the Fawn-Hooded rat raised at Denver’s altitude. Am J Physiol Lung Cell Mol Physiol 279:L283–L291

    PubMed  Google Scholar 

  • Li H, Elton TS, Chen YF, Oparil S (1994) Increased endothelin receptor gene expression in hypoxic rat lung. Am J Physiol 266:L553–L560

    PubMed  CAS  Google Scholar 

  • Liu D, Wang J, Kinzel B et al (2007) Dosage-dependent requirement of BMP type II receptor for maintenance of vascular integrity. Blood 110:1502–1510

    Article  PubMed  CAS  Google Scholar 

  • Long L, MacLean MR, Jeffery TK et al (2006) Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circ Res 98:818–827

    Article  PubMed  CAS  Google Scholar 

  • Lund AK, Lucero J, Herbert L, Liu Y, Naik JS (2011) Human immunodeficiency virus transgenic rats exhibit pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 301:L315–L326

    Article  PubMed  CAS  Google Scholar 

  • MacLean MR, Deuchar GA, Hicks MN et al (2004) Overexpression of the 5-hydroxytryptamine transporter gene: effect on pulmonary hemodynamics and hypoxia-induced pulmonary hypertension. Circulation 109:2150–2155

    Article  PubMed  CAS  Google Scholar 

  • Marcos E, Adnot S, Pham MH et al (2003) Serotonin transporter inhibitors protect against hypoxic pulmonary hypertension. Am J Respir Crit Care Med 168:487–493

    Article  PubMed  Google Scholar 

  • Marecki JC, Cool CD, Parr JE et al (2006) HIV-1 Nef is associated with complex pulmonary vascular lesions in SHIV-nef-infected macaques. Am J Respir Crit Care Med 174:437–445

    Article  PubMed  CAS  Google Scholar 

  • Marsboom G, Wietholt C, Haney CR et al (2012a) Lung 18F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med 185(6):670–679

    Article  PubMed  CAS  Google Scholar 

  • Marsboom G, Toth PT, Ryan JJ et al (2012b) Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res 110(11):1484–1497

    Article  PubMed  CAS  Google Scholar 

  • McMurtry IF, Davidson AB, Reeves JT, Grover RF (1976) Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ Res 38:99–104

    Article  PubMed  CAS  Google Scholar 

  • McMurtry MS, Bonnet S, Wu X et al (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95:830–840

    Article  PubMed  CAS  Google Scholar 

  • McMurtry MS, Archer SL, Altieri DC et al (2005) Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest 115:1479–1491

    Article  PubMed  CAS  Google Scholar 

  • McMurtry MS, Bonnet S, Michelakis ED, Haromy A, Archer SL (2007a) Statin therapy, alone or with rapamycin, does not reverse monocrotaline pulmonary arterial hypertension: the rapamcyin-atorvastatin-simvastatin study. Am J Physiol Lung Cell Mol Physiol 293:L933–L940

    Article  PubMed  CAS  Google Scholar 

  • McMurtry MS, Moudgil R, Hashimoto K, Bonnet S, Michelakis ED, Archer SL (2007b) Overexpression of human bone morphogenetic protein receptor 2 does not ameliorate monocrotaline pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 292:L872–L878

    Article  PubMed  CAS  Google Scholar 

  • Merklinger SL, Jones PL, Martinez EC, Rabinovitch M (2005) Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 112:423–431

    Article  PubMed  CAS  Google Scholar 

  • Michelakis ED, Dyck JR, McMurtry MS et al (2001) Gene transfer and metabolic modulators as new therapies for pulmonary hypertension. Increasing expression and activity of potassium channels in rat and human models. Adv Exp Med Biol 502:401–418

    Article  PubMed  CAS  Google Scholar 

  • Michelakis ED, McMurtry MS, Wu XC et al (2002) Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105:244–250

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Nagaya N, Satoh T et al (2000) Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med 161:487–492

    Article  PubMed  CAS  Google Scholar 

  • Molteni A, Ward WF, Ts’ao CH, Port CD, Solliday NH (1984) Monocrotaline-induced pulmonary endothelial dysfunction in rats. Proc Soc Exp Biol Med 176:88–94

    Article  PubMed  CAS  Google Scholar 

  • Morrell NW (2006) Pulmonary hypertension due to BMPR2 mutation: a new paradigm for tissue remodeling? Proc Am Thorac Soc 3:680–686

    Article  PubMed  CAS  Google Scholar 

  • Morrell NW, Danilov SM, Satyan KB, Morris KG, Stenmark KR (1997) Right ventricular angiotensin converting enzyme activity and expression is increased during hypoxic pulmonary hypertension. Cardiovasc Res 34:393–403

    Article  PubMed  CAS  Google Scholar 

  • Morrell NW, Yang X, Upton PD et al (2001) Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-beta(1) and bone morphogenetic proteins. Circulation 104:790–795

    Article  PubMed  CAS  Google Scholar 

  • Morrell NW, Adnot S, Archer SL et al (2009) Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 54:S20–S31

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka T, Muramatsu M, Sato K, McMurtry I, Oka M, Fukuchi Y (2001) Mild hypoxia causes severe pulmonary hypertension in fawn-hooded but not in Tester Moriyama rats. Respir Physiol 127:53–60

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka T, Gebb SA, Karoor V et al (2006) Involvement of RhoA/Rho kinase signaling in pulmonary hypertension of the fawn-hooded rat. J Appl Physiol 100:996–1002

    Article  PubMed  CAS  Google Scholar 

  • Newman JH, Wheeler L, Lane KB et al (2001) Mutation in the gene for bone morphogenetic protein receptor II as a cause of primary pulmonary hypertension in a large kindred. N Engl J Med 345:319–324

    Article  PubMed  CAS  Google Scholar 

  • Newman JH, Holt TN, Hedges LK et al (2012) High-altitude pulmonary hypertension in cattle (brisket disease): candidate genes and gene expression profiling of peripheral blood mononuclear cells. Pulm Circ 1:462–469

    Article  CAS  Google Scholar 

  • Ochiai E, Kamei K, Watanabe A et al (2008) Inhalation of Stachybotrys chartarum causes pulmonary arterial hypertension in mice. Int J Exp Pathol 89:201–208

    Article  PubMed  CAS  Google Scholar 

  • Oka M, Homma N, Taraseviciene-Stewart L et al (2007) Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res 100:923–929

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Tanaka Y, Bernstein M, Zhang W, Patterson GA, Botney MD (1997) Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol 151:1019–1025

    PubMed  CAS  Google Scholar 

  • Pan LC, Lame MW, Morin D, Wilson DW, Segall HJ (1991) Red blood cells augment transport of reactive metabolites of monocrotaline from liver to lung in isolated and tandem liver and lung preparations. Toxicol Appl Pharmacol 110:336–346

    Article  PubMed  CAS  Google Scholar 

  • Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N (2009) Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J Lipid Res 50(Suppl):S178–S182

    PubMed  Google Scholar 

  • Perros F, Montani D, Dorfmuller P et al (2008) Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 178:81–88

    Article  PubMed  CAS  Google Scholar 

  • Piao L, Toth PT, Urboniene D, Archer SL (2009) Impaired oxidative metabolism and enhanced glycolysis in right ventricular hypertrophy: the warburg effect. PVRI Rev 1:163–166

    Article  Google Scholar 

  • Piao L, Fang YH, Cadete VJ et al (2010a) The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med (Berl) 88:47–60

    Article  CAS  Google Scholar 

  • Piao L, Marsboom G, Archer SL (2010b) Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med (Berl) 88:1011–1020

    Article  CAS  Google Scholar 

  • Piao L, Sidhu V, Fang Y, Thenappan T, Lopaschuk GD, Archer S (2012) Chronic inhibition of pyruvate dehydrogenase kinase with dichloroacetate improves cardiac metabolism and function in right ventricular hypertrophy in fawn-hooded rats. J Am Coll Cardiol 59:E1604

    Article  Google Scholar 

  • Pogoriler J, Rich S, Archer S, Husain A (2012) Persistence of complex vascular lesions despite prolonged prostacyclin therapy of pulmonary arterial hypertension. Histopathology 61(4):597–609

    PubMed  Google Scholar 

  • Pozeg ZI, Michelakis ED, McMurtry MS et al (2003) In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107:2037–2044

    Article  PubMed  CAS  Google Scholar 

  • Price LC, Wort SJ, Perros F et al (2012) Inflammation in pulmonary arterial hypertension. Chest 141:210–221

    Article  PubMed  CAS  Google Scholar 

  • Pugh ME, Hemnes AR (2010) Development of pulmonary arterial hypertension in women: interplay of sex hormones and pulmonary vascular disease. Womens Health (Lond Engl) 6:285–296

    Article  Google Scholar 

  • Rabinovitch M, Fisher K, Gamble W, Reid L, Treves S (1979) Thallium-201: quantitation of right ventricular hypertrophy in chronically hypoxic rats. Radiology 130:223–225

    PubMed  CAS  Google Scholar 

  • Rabinovitch M, Gamble WJ, Miettinen OS, Reid L (1981) Age and sex influence on pulmonary hypertension of chronic hypoxia and on recovery. Am J Physiol 240:H62–H72

    PubMed  CAS  Google Scholar 

  • Raczniak TJ, Chesney CF, Allen JR (1978) Ultrastructure of the right ventricle after monocrotaline-induced cor pulmonale in the nonhuman primate (Macaca arctoides). Exp Mol Pathol 28:107–118

    Article  PubMed  CAS  Google Scholar 

  • Reeve HL, Michelakis E, Nelson DP, Weir EK, Archer SL (2001) Alterations in a redox oxygen sensing mechanism in chronic hypoxia. J Appl Physiol 90:2249–2256

    PubMed  CAS  Google Scholar 

  • Rhodes J (2005) Comparative physiology of hypoxic pulmonary hypertension: historical clues from brisket disease. J Appl Physiol 98:1092–1100

    Article  PubMed  Google Scholar 

  • Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S (2011) Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest 139:988–993

    Article  PubMed  Google Scholar 

  • Robbins IM, Newman JH, Johnson RF et al (2009) Association of the metabolic syndrome with pulmonary venous hypertension. Chest 136:31–36

    Article  PubMed  Google Scholar 

  • Rosenberg HC, Rabinovitch M (1988) Endothelial injury and vascular reactivity in monocrotaline pulmonary hypertension. Am J Physiol 255:H1484–H1491

    PubMed  CAS  Google Scholar 

  • Ryan J, Bloch K, Archer SL (2011) Rodent models of pulmonary hypertension: harmonisation with the world health organisation’s categorisation of human PH. Int J Clin Pract Suppl (172):15–34

    Google Scholar 

  • Sakao S, Tatsumi K (2011) The effects of antiangiogenic compound SU5416 in a rat model of pulmonary arterial hypertension. Respiration 81:253–261

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Webb S, Tucker A et al (1992) Factors influencing the idiopathic development of pulmonary hypertension in the fawn hooded rat. Am Rev Respir Dis 145:793–797

    Article  PubMed  CAS  Google Scholar 

  • Schultze AE, Roth RA (1998) Chronic pulmonary hypertension – the monocrotaline model and involvement of the hemostatic system. J Toxicol Environ Health B Crit Rev 1:271–346

    Article  PubMed  CAS  Google Scholar 

  • Schulze A, Roth R (1998) Chronic pulmonary hypertension – the monocrotaline model and involvement of the hemostatic system. J Toxicol Environ Health B Crit Rev 1:271–346

    Article  Google Scholar 

  • Shimoda LA, Manalo DJ, Sham JS, Semenza GL, Sylvester JT (2001) Partial HIF-1alpha deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am J Physiol Lung Cell Mol Physiol 281:L202–L208

    PubMed  CAS  Google Scholar 

  • Sitbon O, Lascoux-Combe C, Delfraissy JF et al (2008) Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. Am J Respir Crit Care Med 177:108–113

    Article  PubMed  Google Scholar 

  • Song Y, Jones JE, Beppu H, Keaney JF Jr, Loscalzo J, Zhang YY (2005) Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112:553–562

    Article  PubMed  CAS  Google Scholar 

  • Spiekerkoetter E, Alvira CM, Kim YM et al (2008) Reactivation of gammaHV68 induces neointimal lesions in pulmonary arteries of S100A4/Mts1-overexpressing mice in association with degradation of elastin. Am J Physiol Lung Cell Mol Physiol 294:L276–L289

    Article  PubMed  CAS  Google Scholar 

  • Stenmark KR, McMurtry IF (2005) Vascular remodeling versus vasoconstriction in chronic hypoxic pulmonary hypertension: a time for reappraisal? Circ Res 97:95–98

    Article  PubMed  CAS  Google Scholar 

  • Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691

    Article  PubMed  CAS  Google Scholar 

  • Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF (2009) Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297:L1013–L1032

    Article  PubMed  CAS  Google Scholar 

  • Sweiss NJ, Hushaw L, Thenappan T et al (2010) Diagnosis and management of pulmonary hypertension in systemic sclerosis. Curr Rheumatol Rep 12:8–18

    Article  PubMed  Google Scholar 

  • Taraseviciene-Stewart L, Kasahara Y, Alger L et al (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15:427–438

    Article  PubMed  CAS  Google Scholar 

  • Thenappan T, Shah SJ, Rich S, Tian L, Archer SL, Gomberg-Maitland M (2010) Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur Respir J 35:1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Thibault HB, Kurtz B, Raher MJ et al (2010) Noninvasive assessment of murine pulmonary arterial pressure: validation and application to models of pulmonary hypertension. Circ Cardiovasc Imaging 3:157–163

    Article  PubMed  Google Scholar 

  • Thomson JR, Machado RD, Pauciulo MW et al (2000) Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J Med Genet 37:741–745

    Article  PubMed  CAS  Google Scholar 

  • Tobach E, DeSantis JL, Zucker MB (1984) Platelet storage pool disease in hybrid rats. F1 fawn-hooded rats derived from crosses with their putative ancestors (Rattus norvegicus). J Hered 75:15–18

    PubMed  CAS  Google Scholar 

  • Tschopp B, Weiss HJ (1974) Decreased ATP, ADP and serotonin in young platelets of fawn-hooded rats with storage pool disease. Thromb Diath Haemorrh 2:670–677

    Google Scholar 

  • Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S (2007) Pathology of pulmonary hypertension. Clin Chest Med 28:23–42, vii

    Article  PubMed  Google Scholar 

  • Urboniene D, Haber I, Fang YH, Thenappan T, Archer SL (2010) Validation of high-resolution echocardiography and magnetic resonance imaging vs. high-fidelity catheterization in experimental pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 299:L401–L412

    Article  PubMed  CAS  Google Scholar 

  • Valmary S, Dorfmuller P, Montani D, Humbert M, Brousset P, Degano B (2011) Human gamma-herpesviruses Epstein-Barr virus and human herpesvirus-8 are not detected in the lungs of patients with severe pulmonary arterial hypertension. Chest 139:1310–1316

    Article  PubMed  Google Scholar 

  • van Albada ME, Schoemaker RG, Kemna MS, Cromme-Dijkhuis AH, van Veghel R, Berger RM (2005) The role of increased pulmonary blood flow in pulmonary arterial hypertension. Eur Respir J 26:487–493

    Article  PubMed  Google Scholar 

  • van Rodijnen WF, van Lambalgen TA, Tangelder GJ, van Dokkum RP, Provoost AP, ter Wee PM (2002) Reduced reactivity of renal microvessels to pressure and angiotensin II in fawn-hooded rats. Hypertension 39:111–115

    Article  PubMed  Google Scholar 

  • Wagner JG, Petry TW, Roth RA (1993) Characterization of monocrotaline pyrrole-induced DNA cross-linking in pulmonary artery endothelium. Am J Physiol 264:L517–L522

    PubMed  CAS  Google Scholar 

  • Weir EK, Reeve HL, Johnson G, Michelakis ED, Nelson DP, Archer SL (1998) A role for potassium channels in smooth muscle cells and platelets in the etiology of primary pulmonary hypertension. Chest 114:200S–204S

    Article  PubMed  CAS  Google Scholar 

  • Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353:2042–2055

    Article  PubMed  CAS  Google Scholar 

  • West J, Fagan K, Steudel W et al (2004) Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res 94:1109–1114

    Article  PubMed  CAS  Google Scholar 

  • West J, Harral J, Lane K et al (2008) Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions. Am J Physiol Lung Cell Mol Physiol 295:L744–L755

    Article  PubMed  CAS  Google Scholar 

  • White RJ, Meoli DF, Swarthout RF et al (2007) Plexiform-like lesions and increased tissue factor expression in a rat model of severe pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 293:L583–L590

    Article  PubMed  CAS  Google Scholar 

  • Wideman R (2000) Cardio-pulmonary hemodynamics and ascites in broiler chickens. Poult Avian Biol Rev 11:21–43

    Google Scholar 

  • Wideman RF Jr, Hamal KR (2011) Idiopathic pulmonary arterial hypertension: an avian model for plexogenic arteriopathy and serotonergic vasoconstriction. J Pharmacol Toxicol Methods 63:283–295

    Article  PubMed  CAS  Google Scholar 

  • Wilson DW, Segall HJ (1990) Changes in type II cell populations in monocrotaline pneumotoxicity. Am J Pathol 136:1293–1299

    PubMed  CAS  Google Scholar 

  • Wilson DW, Segall HJ, Pan LC, Dunston SK (1989) Progressive inflammatory and structural changes in the pulmonary vasculature of monocrotaline-treated rats. Microvasc Res 38:57–80

    Article  PubMed  CAS  Google Scholar 

  • Woods LW, Wilson DW, Segall HJ (1999) Manipulation of injury and repair of the alveolar epithelium using two pneumotoxicants: 3-methylindole and monocrotaline. Exp Lung Res 25:165–181

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Long L, Reynolds PN, Morrell NW (2011) Expression of mutant BMPR-II in pulmonary endothelial cells promotes apoptosis and a release of factors that stimulate proliferation of pulmonary arterial smooth muscle cells. Pulm Circ 1:103–110

    PubMed  CAS  Google Scholar 

  • Young KA, Ivester C, West J, Carr M, Rodman DM (2006) BMP signaling controls PASMC KV channel expression in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 290:L841–L848

    Article  PubMed  CAS  Google Scholar 

  • Yuan JX, Aldinger AM, Juhaszova M et al (1998) Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 98:1400–1406

    Article  PubMed  CAS  Google Scholar 

  • Zamora MR, Stelzner TJ, Webb S, Panos RJ, Ruff LJ, Dempsey EC (1996) Overexpression of endothelin-1 and enhanced growth of pulmonary artery smooth muscle cells from fawn-hooded rats. Am J Physiol 270:L101–L109

    PubMed  CAS  Google Scholar 

  • Zhang S, Fantozzi I, Tigno DD et al (2003) Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 285:L740–L754

    PubMed  CAS  Google Scholar 

  • Zhang S, Patel HH, Murray F et al (2007) Pulmonary artery smooth muscle cells from normal subjects and IPAH patients show divergent cAMP-mediated effects on TRPC expression and capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 292:L1202–L1210

    Article  PubMed  CAS  Google Scholar 

  • Zhao L (2010) Chronic hypoxia-induced pulmonary hypertension in rat: the best animal model for studying pulmonary vasoconstriction and vascular medial hypertrophy. Drug Discov Today Dis Models 7:83–88

    Article  CAS  Google Scholar 

  • Zhao L, Sebkhi A, Nunez DJ et al (2001) Right ventricular hypertrophy secondary to pulmonary hypertension is linked to rat chromosome 17: evaluation of cardiac ryanodine Ryr2 receptor as a candidate. Circulation 103:442–447

    Article  PubMed  CAS  Google Scholar 

  • Zhao YD, Campbell AI, Robb M, Ng D, Stewart DJ (2003) Protective role of angiopoietin-1 in experimental pulmonary hypertension. Circ Res 92:984–991

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Archer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ryan, J.J., Marsboom, G., Archer, S.L. (2013). Rodent Models of Group 1 Pulmonary Hypertension. In: Humbert, M., Evgenov, O., Stasch, JP. (eds) Pharmacotherapy of Pulmonary Hypertension. Handbook of Experimental Pharmacology, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38664-0_5

Download citation

Publish with us

Policies and ethics