Skip to main content

Inhaled Nitric Oxide for the Treatment of Pulmonary Arterial Hypertension

  • Chapter
  • First Online:
Pharmacotherapy of Pulmonary Hypertension

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 218))

Abstract

Following the recognition of nitric oxide (NO) as the “endothelium-derived relaxing factor,” an explosion of laboratory and clinical research led to the development of inhaled NO as a potential therapy for patients with pulmonary arterial hypertension (PAH). Despite clear demonstration of its selective and potent pulmonary vasodilator properties, inhaled NO therapy has only been formally approved by the US Food and Drug Administration and European Medicine Evaluation Agency for clinical use in the treatment of term and near-term infants with severe persistent pulmonary hypertension of the newborn (PPHN) with acute hypoxemic respiratory failure. Over the past decades, inhaled NO remains the central therapy for PPHN and is commonly used for acute pulmonary vasoreactivity testing during right heart catheterization and for treating pediatric and adult patients with PAH associated with postoperative cardiac surgery, severe respiratory failure, pulmonary hypertension crises, and other disorders. This review will describe the current use of inhaled NO in clinical practice and briefly discuss its potential role for the treatment of chronic PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abman SH, Shanley PF, Accurso FJ (1989) Failure of postnatal adaptation of the pulmonary circulation after chronic intrauterine pulmonary hypertension in fetal lambs. J Clin Invest 83:1849–1858

    Article  PubMed  CAS  Google Scholar 

  • Abman SH, Chatfield BA, Hall SL et al (1990) Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am J Physiol 259:H1921–H1927

    PubMed  CAS  Google Scholar 

  • Abman SH, Chatfield BA, Rodman DM, Hall SL, McMurtry IF (1991) Maturation-related changes in endothelium-dependent relaxation of ovine pulmonary arteries. Am J Physiol 260:L280–L285

    PubMed  CAS  Google Scholar 

  • Abman SH, Kinsella JP, Schaffer MS, Wilkening RB (1993) Inhaled nitric oxide therapy in the management of a premature newborn with severe respiratory distress and pulmonary hypertension. Pediatrics 92:606–609

    PubMed  CAS  Google Scholar 

  • Abman SH, Griebel J, Schmidt J, Parker D, Swanton D, Kinsella JP (1994) Acute effects of inhaled nitric oxide in severe hypoxemic respiratory failure in pediatrics. J Pediatr 174:681–688

    Google Scholar 

  • Ardehali A, Hughes K, Sadeghi A, Esmailian F, Marelli D, Moriguchi J et al (2001) Inhaled nitric oxide for pulmonary hypertension after heart transplantation. Transplantation 72:638–641

    Article  PubMed  CAS  Google Scholar 

  • Assruey J, Cunha FQ, Liew FY, Moncada S (1993) Feedback inhibition of nitric oxide synthase activity by NO. Br J Pharmacol 108:833–837

    Article  Google Scholar 

  • Atz AM, Adatia I, Lock JE, Wessel DL (1999) Combined effects of nitric oxide and oxygen during acute pulmonary vasodilator testing. J Am Coll Cardiol 33:813–819

    Article  PubMed  CAS  Google Scholar 

  • Ballard RA, Truog WE, Cnaan A, Martin RJ, Ballard PL, Merrill JD et al (2006) Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med 355:343–353

    Article  PubMed  CAS  Google Scholar 

  • Banks BA, Seri I, Ischiropoulos H, Merrill J, Rychik J, Ballard RA (1999) Changes in oxygenation with inhaled NO in severe BPD. Pediatrics 103:870–874

    Article  Google Scholar 

  • Baquero H, Soliz A, Neira F et al (2006) Oral sildenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized blinded study. Pediatrics 117:1077–1083

    Article  PubMed  Google Scholar 

  • Bland RD, Ling CY, Albertine KH, Carlton DP, MacRitchie AJ, Day RW, Dahl MJ (2003) Pulmonary vascular dysfunction in preterm lambs with chronic lung disease. Am J Physiol Lung Cell Mol Physiol 285:L76–L85

    Article  PubMed  CAS  Google Scholar 

  • Brown KL et al (2003) Risk factors for long intensive care unit stay after cardiopulmonary bypass in children. Crit Care Med 31:28–33

    Article  PubMed  Google Scholar 

  • Channick RN, Newhart JW, Johnson FW, Williams PJ, Auger WR, Fedullo PF et al (1996) Pulsed delivery of inhaled nitric oxide to patients with primary pulmonary hypertension: an ambulatory delivery system and initial clinical tests. Chest 109:1545–1549

    Article  PubMed  CAS  Google Scholar 

  • Chester M, Tourneux P, Seedorf G, Grover TR, Abman SH (2009) Cinaciguat, a soluble guanylate cyclase activator, causes potent and sustained pulmonary vasodilation in the ovine fetus. Am J Physiol 297:L318–L325

    CAS  Google Scholar 

  • Clark RH, Kueser TJ, Walker MW, Southgate WM, Huckaby JL, Perez JA et al (2000) Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. Clinical Inhaled Nitric Oxide Research Group. N Engl J Med 342:469–474

    Article  PubMed  CAS  Google Scholar 

  • Cole FS, Alleyne C, Barks JD et al (2011) NIH consensus development conference statement: inhaled NO therapy for premature infants. Pediatrics 127:363–369

    Article  PubMed  Google Scholar 

  • Costard-Jackle A, Fowler MB (1992) Influence of preoperative pulmonary artery pressure on mortality after heart transplantation: testing of potential reversibility of pulmonary hypertension with nitroprusside is useful in defining a high risk group. J Am Coll Cardiol 19:48–54

    Article  PubMed  CAS  Google Scholar 

  • Davidson D, Barefield ES, Kattwinkel J, Dudell G, Damask M, Straube R et al (1998) Inhaled nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: a randomized, double masked, placebo-controlled, dose-response, multicenter study. Pediatrics 101:325–334

    Article  PubMed  CAS  Google Scholar 

  • Day RW et al (2000) Randomized controlled study of inhaled nitric oxide after operation for congenital heart disease. Ann Thorac Surg 69:1907–1912

    Article  PubMed  CAS  Google Scholar 

  • Dellinger RP, Zimmerman JL, Taylor RW, Straube RC (1998) Placebo and inhaled nitric oxide mortality the same in ARDS clinical trial. Crit Care Med 26:619

    Article  PubMed  CAS  Google Scholar 

  • Deruelle P, Grover TR, Abman SH (2005) Pulmonary vascular effects of nitric oxide-cGMP augmentation in a model of chronic pulmonary hypertension in fetal and neonatal sheep. Am J Physiol Lung Cell Mol Physiol 289:L788–L806

    Article  Google Scholar 

  • Deruelle P, Balasubramanuam V, Kunig AM, Seedorf G, Markham NE, Abman SH (2006) Bay 41-2272, a direct activator of soluble guanylate cyclase, reduces right ventricular hypertrophy and improves pulmonary vascular structure during chronic hypoxia in neonatal rats. Biol Neonate 90:135–144

    Article  PubMed  CAS  Google Scholar 

  • Dobyns EL, Cornfield DN, Anas NG, Fortenberry JD, Tasker RC, Lynch A, Liu P, Eells PL, Griebel J, Baier M, Kinsella JP, Abman SH (1999) Multicenter randomized trial of the effects of inhaled NO therapy on gas exchange in children with acute hypoxemic respiratory failure. J Pediatr 134:406–412

    Article  PubMed  CAS  Google Scholar 

  • Farrow KN, Groh BS, Schumacker PT et al (2008a) Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells. Circ Res 102:226–233

    Article  PubMed  CAS  Google Scholar 

  • Farrow KN, Lakshminrusimha S, Reda WJ et al (2008b) Superoxide dismutase restores eNOS expression and function in resistance pulmonary arteries from neonatal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295:L979–L987

    Article  PubMed  Google Scholar 

  • Fojon S, Fernandez-Gonzalez C, Sanchez-Andrade J, Lopez-Perez JM, Hermida LF, Rodriguez JA et al (2005) Inhaled nitric oxide through a noninvasive ventilation device to assess reversibility of pulmonary hypertension in selecting recipients for heart transplant. Transplant Proc 37:4028–4030

    Article  PubMed  CAS  Google Scholar 

  • Francis SH, Bsuch JL, Corbin JD, Sibley D (2010) cGMP dependent protein kinases and cGMP phosphodiesterases in NO and cGMP action. Pharmacol Rev 62:525–563

    Article  PubMed  CAS  Google Scholar 

  • Frostell C, Fratacci MD, Wain JC, Jones R, Zapol WM (1991) Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 83:2038–2047

    Article  PubMed  CAS  Google Scholar 

  • Fullerton DA, Jones SD, Jaggers J, Piedalue F, Grover FL, McIntyre RC Jr (1996) Effective control of pulmonary vascular resistance with inhaled nitric oxide after cardiac operation. J Thorac Cardiovasc Surg 111:753–762

    Article  PubMed  CAS  Google Scholar 

  • Gao Y (2010) Multiple actions of NO. Pflugers Archiv Eur J Phyisol 459:829–839

    Article  CAS  Google Scholar 

  • Gao Y, Raj JU (2010) Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev 90:1291–1335

    Article  PubMed  CAS  Google Scholar 

  • Geggel R, Reid LM (1984) The structural basis for PPHN. Clin Perinatol 11:525–549

    PubMed  CAS  Google Scholar 

  • Gerlach H, Roissant R, Pappert D, Falke KJ (1993) Time-course and dose-response of NO inhalation for systemic oxygenation and pulmonary hypertension in patients with ARDS. Eur J Clin Invest 23:499–502

    Article  PubMed  CAS  Google Scholar 

  • Giglia TM, Humpl T (2010) Preoperative pulmonary hemodynamics and assessment of operability: is there a pulmonary vascular resistance that precludes cardiac operation? Pediatr Crit Care Med 11:S57–S69

    Article  PubMed  Google Scholar 

  • Goldman AP et al (1996) Pharmacological control of pulmonary blood flow with inhaled nitric oxide after the fenestrated Fontan operation. Circulation 94:II44–II48

    PubMed  CAS  Google Scholar 

  • Gothberg S, Edberg KE (2000) Inhaled nitric oxide to newborns and infants after congenital heart surgery on cardiopulmonary bypass: a dose-response study. Scand Cardiovasc J 34:154–158

    Article  PubMed  CAS  Google Scholar 

  • Halbower AC, Tuder RM, Franklin WA, Pollock JS, Forstermann U, Abman SH (1994) Maturation-related changes in endothelial NO synthase immunolocalization in the developing ovine lung. Am J Physiol 267:L585–L591

    PubMed  CAS  Google Scholar 

  • Hanson KA, Beavo JA, Abman SH, Clarke WR (1998) Chronic pulmonary hypertension increases fetal lung cGMP activity. Am J Physiol 275:L931–L941

    PubMed  CAS  Google Scholar 

  • Hare JM, Stamler JS (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115:509–517

    PubMed  CAS  Google Scholar 

  • Hofmann F, Bernhard D, Lukowski R, Weinmeister P (2009) cGMP regulated protein kinases (cGK). Handb Exp Pharmacol 191:137–162

    Article  PubMed  CAS  Google Scholar 

  • Hopkins RA et al (1991) Pulmonary hypertensive crises following surgery for congenital heart defects in young children. Eur J Cardiothorac Surg 5:628–634

    Article  PubMed  CAS  Google Scholar 

  • Hoskote A et al (2010) Acute right ventricular failure after pediatric cardiac transplant: predictors and long-term outcome in current era of transplantation medicine. J Thorac Cardiovasc Surg 139:146–153

    Article  PubMed  Google Scholar 

  • Ichinose F, Erana-Garcia J, Hromi J et al (2001) Nebulized sildenafil is a selective pulmonary vasodilator in lambs with acute pulmonary hypertension. Crit Care Med 29:1000–1005

    Article  PubMed  CAS  Google Scholar 

  • Ivy DD, Wiggins JW, Badesch D, Kinsella JP, Kelminson LL, Abman SH (1994) Treatment of an infant with severe primary pulmonary hypertension using inhaled nitric oxide and prostacyclin. Am J Cardiol 74:414–416

    Article  PubMed  CAS  Google Scholar 

  • Ivy DD et al (1998a) Dipyridamole attenuates rebound pulmonary hypertension after inhaled nitric oxide withdrawal in postoperative congenital heart disease. J Thorac Cardiovasc Surg 115:875–882

    Article  PubMed  CAS  Google Scholar 

  • Ivy DD, Griebel JL, Kinsella JP, Abman SH (1998b) Acute hemodynamic effects of pulsed delivery of low flow nasal nitric oxide in children with pulmonary hypertension. J Pediatr 133:453–456

    Article  PubMed  CAS  Google Scholar 

  • Ivy DD, Parker D, Doran A, Parker D, Kinsella JP, Abman SH (2003) Acute hemodynamic effects and home therapy using a novel pulsed nasal nitric oxide delivery system in children and young adults with pulmonary hypertension. Am J Cardiol 92:886–890

    Article  PubMed  CAS  Google Scholar 

  • Journois D et al (1994) Inhaled nitric oxide as a therapy for pulmonary hypertension after operations for congenital heart defects. J Thorac Cardiovasc Surg 107:1129–1135

    PubMed  CAS  Google Scholar 

  • Journois D et al (2005) Effects of inhaled nitric oxide administration on early postoperative mortality in patients operated for correction of atrioventricular canal defects. Chest 128:3537–3544

    Article  PubMed  CAS  Google Scholar 

  • Kinsella JP, Neish SR, Shaffer E, Abman SH (1992) Low-dose inhalational nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 340:819–820

    Article  PubMed  CAS  Google Scholar 

  • Kinsella JP, Ivy DD, Abman SH (1994a) Ontogeny of NO activity and response to inhaled NO in the developing ovine pulmonary circulation. Am J Physiol 267:H1955–H1961

    PubMed  CAS  Google Scholar 

  • Kinsella JP, Ivy DD, Abman SH (1994b) Inhaled nitric oxide improves gas exchange and lowers pulmonary vascular resistance in severe experimental hyaline membrane disease. Pediatr Res 36:402–408

    Article  PubMed  CAS  Google Scholar 

  • Kinsella JP, Truog WE, Walsh WF et al (1997a) Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J Pediatr 131:55–62

    Article  PubMed  CAS  Google Scholar 

  • Kinsella JP, Parker TA, Galan H, Sheridan BC, Halbower AC, Abman SH (1997b) Effects of inhaled NO on pulmonary edema and lung neutrophil accumulation in severe experimental HMD. Pediatr Res 41:457–463

    Article  PubMed  CAS  Google Scholar 

  • Kinsella JP, Walsh WF, Bose CL, Gerstmann DR, Labella JJ, Sardesai S et al (1999) Inhaled nitric oxide in premature neonates with severe hypoxaemic respiratory failure: a randomised controlled trial. Lancet 354:1061–1065

    Article  PubMed  CAS  Google Scholar 

  • Kinsella JP, Parker TA, Ivy DD, Abman SH (2003) Non-invasive delivery of inhaled NO therapy for late pulmonary hypertension in newborns with congenital diaphragmatic hernia. J Pediatr 142:397–401

    Article  PubMed  CAS  Google Scholar 

  • Kinsella JP, Greenough A, Abman SH (2006a) Bronchopulmonary dysplasia. Lancet 367:1421–1431

    Article  PubMed  Google Scholar 

  • Kinsella JP, Cutter GR, Walsh WF, Gerstmann DR, Bose CL, Hart C et al (2006b) Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N Engl J Med 355:354–364

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Hillier SC, Knoderer CA (2008) Use of sildenafil to facilitate weaning from inhaled nitric oxide in children with pulmonary hypertension following surgery for congenital heart disease. J Intensive Care Med 23:329–334

    Article  PubMed  Google Scholar 

  • Lundin S, Mang H, Smithies M, Stenqvist O, Frostell C (1999) Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intensive Care Med 25:911–919

    Article  PubMed  CAS  Google Scholar 

  • Mercier JC, Hummler H, Durrmeyer X et al (2010) Inhaled NO for prevention of BPD in premature babies (EUNO): a randomized controlled trial. Lancet 376:346–354

    Article  PubMed  CAS  Google Scholar 

  • Michael JR, Barton RG, Saffle JR, Mone M, Markewitz BA, Hillier K et al (1998) Inhaled nitric oxide versus conventional therapy: effect on oxygenation in ARDS. Am J Respir Crit Care Med 157:1372–1380

    Article  PubMed  CAS  Google Scholar 

  • Miller OI et al (2000) Inhaled nitric oxide and prevention of pulmonary hypertension after congenital heart surgery: a randomized double-blind study. Lancet 356:1464–1469

    Article  PubMed  CAS  Google Scholar 

  • Morin FC (1989) Ligating the ductus arteriosus before birth causes persistent pulmonary hypertension in the newborn lamb. Pediatr Res 25:245–250

    Article  PubMed  Google Scholar 

  • Morin FC, Egan EA, Ferguson W, Lundgren CEG (1988) Development of pulmonary vascular response to oxygen. Am J Physiol 254:H542–H546

    PubMed  Google Scholar 

  • Mourani P, Ivy DD, Gao D, Abman SH (2004) Pulmonary vascular effects of inhaled NO and oxygen tension in older children and adolescents with bronchopulmonary dysplasia. Am J Respir Crit Care Med 170:1006–1013

    Article  PubMed  Google Scholar 

  • Murphy JD, Rabinovitch M, Goldstein JD et al (1981) The structural basis of persistent pulmonary hypertension of the newborn infant. J Pediatr 98:962–967

    Article  PubMed  CAS  Google Scholar 

  • No Authors (1997) Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. The Neonatal Inhaled Nitric Oxide Study Group. N Engl J Med 336:597–604

    Google Scholar 

  • North AJ, Star RA, Brannon TS, Ujiie K, Wells LB, Lowenstien CJ, Snyder SH, Shaul PW (1994) NO synthase type I and type III gene expression are developmentally regulated in rat lung. Am J Physiol 266:L635–L641

    PubMed  CAS  Google Scholar 

  • Parker TA, Le Cras TD, Kinsella JP, Abman SH (2000) Developmental changes in endothelial NO synthase expression in the ovine fetal lung. Am J Physiol 278:L202–L208

    CAS  Google Scholar 

  • Peliowski A, Finer NN, Etches PC, Tierney AJ, Ryan CA (1995) Inahled NO for premature infants after prolonged rupture of the membranes. J Pediatr 126:450–453

    Article  PubMed  CAS  Google Scholar 

  • Pepke-Zaba J, Higenbottam TW, Dinh-Xuan AT, Stone D, Wallwork J (1991) Inhaled NO as a cause of selective pulmonary vasodilation in pulmonary hypertension. Lancet 338:1173–1174

    Article  PubMed  CAS  Google Scholar 

  • Perez-Penate GM, Julia-Serda G, Ojeda-Betancort N, Garcia-Quintana A, Pulido-Duque J, Rodriguez-Perez A et al (2008) Long-term inhaled nitric oxide plus phosphodiesterase 5 inhibitors for severe pulmonary hypertension. J Heart Lung Transplant 27:1326–1332

    Article  PubMed  Google Scholar 

  • Post MC, Janssens S, Van de Werf F, Budts W (2004) Responsiveness to inhaled nitric oxide is a predictor for mid-term survival in adult patients with congenital heart defects and pulmonary arterial hypertension. Eur Heart J 25:1651–1656

    Article  PubMed  CAS  Google Scholar 

  • Rasanen J, Wood DC, Debbs RH, Cohen J, Weiner S, Huhta JC (1998) Reactivity of the human fetal pulmonary circulation to maternal hyperoxygenation increases during the second half of pregnancy. A randomized study. Circulation 97:257–262

    Article  PubMed  CAS  Google Scholar 

  • Ricciardi MJ, Knight BP, Martinez FJ, Rubenfire M (1998) Inhaled nitric oxide in primary pulmonary hypertension: a safe and effective agent for predicting response to nifedipine. J Am Coll Cardiol 32:1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Rich S, Kaufmann E, Levy PS (1992) The effect of high doses of calcium channel blockers on survival in primary pulmonary hypertension. N Engl J Med 327:76–81

    Article  PubMed  CAS  Google Scholar 

  • Roberts JD Jr, Polaner DM, Lang P, Zapol WM (1992) Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 340:818–819

    Article  PubMed  CAS  Google Scholar 

  • Roberts JD Jr, Fineman JR, Morin FC III, Shaul PW, Rimar S, Schreiber MD et al (1997) Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. N Engl J Med 336:605–610

    Article  PubMed  CAS  Google Scholar 

  • Rossaint R, Falke KJ, Lopez F, Slama K, Pison U, Zapol WM (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 328:399–405

    Article  PubMed  CAS  Google Scholar 

  • Rudolph AM, Heymann MA, Lewis AB (1977) Physiology and pharmacology of the pulmonary circulation in the fetus and newborn. In: Hodson W (ed) Development of the lung. Marcel Dekker, New York, pp 497–523

    Google Scholar 

  • Schreiber MD, Gin-Mestan K, Marks JD, Huo D, Lee G, Srisuparp P (2003) Inhaled nitric oxide in premature infants with the respiratory distress syndrome. N Engl J Med 349:2099–2107

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Neick I et al (2001) Pulmonary vascular resistance after cardiopulmonary bypass in infants: effect on postoperative recovery. J Thorac Cardiovasc Surg 121:1033–1039

    Article  PubMed  CAS  Google Scholar 

  • Shaul PW, Yuhanna IS, German Z et al (1997) Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 272:L1005–L1012

    CAS  Google Scholar 

  • Shekerdemian L, Ravn H, Penny D (2002) Intravenous sildenafil lowers pulmonary vascular resistance in a model of neonatal pulmonary hypertension. Am J Respir Crit Care Med 165:1098–2002

    Article  PubMed  Google Scholar 

  • Shekerdemian LS, Ravn HB, Penny DJ (2004) Interaction between inhaled nitric oxide and intravenous sildenafil in a porcine model of meconium aspiration syndrome. Pediatr Res 55:413–418

    Article  PubMed  CAS  Google Scholar 

  • Somlyo AP, Solyo AV (2003) Ca2+ sensitivity of smooth muscle and non-smooth muscle myosin II: modulated be G proteins, kinases and myosin phosphatase. Physiol Rev 83:1325–1358

    PubMed  CAS  Google Scholar 

  • Steinhorn R, Porta N (2007) Use of inhaled nitric oxide in the preterm infant. Curr Opin Pediatr 19:137–141

    Article  PubMed  Google Scholar 

  • Steinhorn RH, Russell JA, Morin FC (1995) Disruption of cGMP production in pulmonary arteries isolated from fetal lambs with pulmonary hypertension. Am J Physiol 268:H1483–H1489

    PubMed  CAS  Google Scholar 

  • Steinhorn RH, Kinsella JP, Pierce C et al (2009) Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension. J Pediatr 155:841–847.e1

    Article  PubMed  CAS  Google Scholar 

  • Torko JA, Brahmajohi MV, Zhu H, Tinch BT, Auten RL, McMahon TJ (2012) Transpulmonary flux of S-nitrosothiols and pulmonary vasodilation during NO inhalation. Role of Transport. Am J Respir Cell Mol Biol 47:37–43

    Article  Google Scholar 

  • Villamor E, LeCras TD, Horan MP et al (1997) Chronic intrauterine pulmonary hypertension impairs endothelial nitric oxide synthase in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 272:L1013–L1020

    CAS  Google Scholar 

  • Vonbank K, Ziesche R, Higenbottam TW, Stiebellehner L, Petkov V, Schenk P et al (2003) Controlled prospective randomised trial on the effects on pulmonary haemodynamics of the ambulatory long term use of nitric oxide and oxygen in patients with severe COPD. Thorax 58:289–293

    Article  PubMed  CAS  Google Scholar 

  • Weimann J, Ullrich R, Hromi J et al (2000) Sildenafil is a pulmonary vasodilator in awake lambs with acute pulmonary hypertension. Anesthesiology 92:1702–1712

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven H. Abman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abman, S.H. (2013). Inhaled Nitric Oxide for the Treatment of Pulmonary Arterial Hypertension. In: Humbert, M., Evgenov, O., Stasch, JP. (eds) Pharmacotherapy of Pulmonary Hypertension. Handbook of Experimental Pharmacology, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38664-0_11

Download citation

Publish with us

Policies and ethics