Skip to main content

Computational Fluid Dynamics and Cerebral Aneurysms

  • Living reference work entry
  • First Online:
PanVascular Medicine
  • 318 Accesses

Abstract

Advances in computational techniques mitigated by faster computer hardware and improvements in software algorithms have increased interest in exploring their potential value for application in clinical research. Information derived from medical image data can be utilized to create computational models for simulating hemodynamics in cerebral aneurysms. In this chapter, we review the principles of computational fluid dynamics (CFD) aimed at this application and discuss results from selected studies which focused on developing CFD techniques for applications in clinical research. Validation studies comparing measurements with simulation results have demonstrated that this approach is viable and thereby encourage further development and refinement. They have also shown that multidisciplinary collaborative teams involving clinicians and clinical and basic scientists are needed to lead these exciting translational research efforts to fruition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Aneurysm:

A focal balloon-like extension or bulge in a blood vessel. Cerebral aneurysms affect arteries of the brain, while aortic aneurysms are located in the aorta.

Computational fluid dynamics:

A subspecialty of the large field of fluid mechanics in which numerical algorithms are developed and used with high-performance computers to solve problems related to fluid flow.

Computed tomography angiography:

A medical imaging technology where the computational analysis of X-rays is combined with the administration of a contrast agent to create three-dimensional visualization of blood vessels and the heart.

Digital subtraction angiography:

A medical imaging technique based on fluoroscopy, where images acquired before and after the administration of a contrast agent are subtracted to obtain very accurate visualizations of blood vessels with high spatial resolution.

Endothelium:

A thin layer of cells lining the inner surface of blood vessels. Endothelial cells have been shown to have receptors for sensing the wall shear stress created by the flowing blood.

Endovascular treatment:

A surgical technique to treat selected vascular pathologies in the brain and other parts of the body through a catheter and attached medical devices which are navigated to the treatment site within the blood vessels.

Hemodynamics:

The field which aims at developing a better understanding of how blood flows in blood vessels by establishing the corresponding physical laws and the governing equations of motion.

Magnetic resonance imaging:

A medical imaging technology which uses strong magnetic fields and radio-frequency pulses to probe and visualize anatomy and physiology both in health and disease.

Mesh generation:

The digital separation of an often irregularly shaped volume into small regular volume elements, for instance, tetrahedra, pyramids, or hexahedra. This is a prerequisite for applying computational simulations which rely on finite element methods such as computational fluid dynamics.

Wall shear stress:

Shear stresses describe the effect of a force parallel to a cross section of material and are defined as the ratio of the magnitude of this force and the cross-sectional area of material over which the force is applied. Wall shear stresses in blood flow relate to the shear exerted by force of the flowing blood onto the wall of the blood vessel.

References and Further Reading

  • Acevedo-Bolton G, Jou LD, Dispensa BP, Lawton MT, Higashida RT, Martin AJ, Young WL, Saloner D (2006) Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental validation: technical case report. Neurosurgery 59(2):E429–E430; author reply E429–E430

    Article  PubMed  Google Scholar 

  • Berg P, Stucht D, Janiga G, Beuing O, Speck O, Thevenin D (2013) Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational Fluid dynamics versus 4D phase-contrast magnetic resonance imaging. J Biomech Eng. doi:10.1115/1.4026108

    PubMed  Google Scholar 

  • Black SP, Leo HL, Carson WL (1988) Recording and measuring the interior features of intracranial aneurysms removed at autopsy: method and initial findings. Neurosurgery 22(1 Pt 1):40–44

    Article  PubMed  CAS  Google Scholar 

  • Broderick JPBT, Duldner JE, Tomsick T, Leach A (1994) Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 25:1342–1347

    Article  PubMed  CAS  Google Scholar 

  • Broderick JP, Viscoli CM, Brott T, Kernan WN, Brass LM, Feldmann E, Morgenstern LB, Wilterdink JL, Horwitz RI (2003) Major risk factors for aneurysmal subarachnoid hemorrhage in the young are modifiable. Stroke 34(6):1375–1381

    Article  PubMed  Google Scholar 

  • Castro MA, Putman CM, Cebral JR (2006) Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. AJNR Am J Neuroradiol 27(10):2061–2068

    PubMed  CAS  Google Scholar 

  • Cebral JR, Meng H (2012) Counterpoint: realizing the clinical utility of computational fluid dynamics – closing the gap. AJNR Am J Neuroradiol 33:396–398

    Article  PubMed  CAS  Google Scholar 

  • Cebral JR, Castro MA, Burgess JE, Pergolizzi RS, Sheridan MJ, Putman CM (2005) Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol 26(10):2550–2559

    PubMed  Google Scholar 

  • Cebral JR, Mut F, Weir J, Putman C (2011a) Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol 32(1):145–151

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cebral JR, Mut F, Raschi M, Scrivano E, Ceratto R, Lylyk P, Putman CM (2011b) Aneurysm rupture following treatment with flow-diverting stents: computational hemodynamics analysis of treatment. AJNR Am J Neuroradiol 32(1):27–33

    PubMed  CAS  Google Scholar 

  • Chien A, Sayre J, Viñuela F (2011) Comparative morphological analysis of the geometry of ruptured and unruptured aneurysms. Neurosurgery 69(2):349–356

    Article  PubMed  Google Scholar 

  • Chitanvis SM, Hademenos G, Powers WJ (1995) Hemodynamic assessment of the development and rupture of intracranial aneurysms using computational simulations. Neurol Res 17(6):426–434

    PubMed  CAS  Google Scholar 

  • Dempere-Marco L, Oubel E, Castro M, Putman C, Frangi A, Cebral J (2006) CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 9(Pt 2):438–445

    Google Scholar 

  • Deruty R, Pelissou-Guyotat I, Mottolese C, Amat D (1996) Management of unruptured cerebral aneurysms. Neurol Res 18(1):39–44

    PubMed  CAS  Google Scholar 

  • Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, Hopkins LN, Meng H (2008) Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63(2):185–196; discussion 196–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Martino ES, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P, Redaelli A (2001) Fluid–structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 23(9):647–655

    Article  PubMed  Google Scholar 

  • Dolan JM, Meng H, Singh S, Paluch R, Kolega J (2011) High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann Biomed Eng 39(6):1620–1631

    Article  PubMed  Google Scholar 

  • Dolan JM, Meng H, Sim FJ, Kolega J (2013a) Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress. Am J Physiol Cell Physiol 305(8):C854–C866

    Article  PubMed  CAS  Google Scholar 

  • Dolan JM, Kolega J, Meng H (2013b) High wall shear stress and spatial gradients in vascular pathology: a review. Ann Biomed Eng 41(7):1411–1427

    Article  PubMed  PubMed Central  Google Scholar 

  • Endres J, Kowarschik M, Redel T, Sharma P, Mihalef V, Hornegger J, Dörfler A (2012) A workflow for patient-individualized virtual angiogram generation based on CFD simulation. Comput Math Methods Med 2012:306765

    Article  PubMed  PubMed Central  Google Scholar 

  • Ford MD, Nikolov HN, Milner JS, Lownie SP, Demont EM, Kalata W, Loth F, Holdsworth DW, Steinman DA (2008) PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J Biomech Eng 130(2):021015

    Article  PubMed  Google Scholar 

  • Foutrakis GN, Yonas H, Sclabassi RJ (1997) Finite element methods in the simulation and analysis of intracranial blood flow. Neurol Res 19(2):174–186

    PubMed  CAS  Google Scholar 

  • Hackett ML, Anderson CS (2000) Health outcomes 1 year after subarachnoid hemorrhage: an international population-based study. The Australian Cooperative Research on Subarachnoid Hemorrhage Study Group. Neurology 55(5):658–662

    Article  PubMed  CAS  Google Scholar 

  • Hassan T, Ezura M, Timofeev EV, Tominaga T, Saito T, Takahashi A, Takayama K, Yoshimoto T (2004) Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. AJNR Am J Neuroradiol 25(1):63–68

    PubMed  Google Scholar 

  • Hoi Y, Meng H, Woodward SH, Bendok BR, Hanel RA, Guterman LR, Hopkins LN (2004) Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J Neurosurg 101(4):676–681

    Article  PubMed  Google Scholar 

  • Hoi Y, Woodward SH, Kim M, Taulbee DB, Meng H (2006) Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J Biomech Eng 128(6):844–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Isoda H, Ohkura Y, Kosugi T, Hirano M, Takeda H, Hiramatsu H, Yamashita S, Takehara Y, Alley MT, Bammer R, Pelc NJ, Namba H, Sakahara H (2010a) In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI. Neuroradiology 52(10):921–928

    Article  PubMed  Google Scholar 

  • Isoda H, Ohkura Y, Kosugi T, Hirano M, Alley MT, Bammer R, Pelc NJ, Namba H, Sakahara H (2010b) Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics. Neuroradiology 52(10):913–920

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Johnson K, Valen-Sendstad K, Mardal KA, Wieben O, Strother C (2011) Flow characteristics in a canine aneurysm model: a comparison of 4D accelerated phase-contrast MR measurements and computational fluid dynamics simulations. Med Phys 38(11):6300–6312

    Article  PubMed  PubMed Central  Google Scholar 

  • Jou LD, Quick CM, Young WL, Lawton MT, Higashida R, Martin A, Saloner D (2003) Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. AJNR Am J Neuroradiol 24(9):1804–1810

    PubMed  Google Scholar 

  • Jou LD, Wong G, Dispensa B, Lawton MT, Higashida RT, Young WL, Saloner D (2005) Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. AJNR Am J Neuroradiol 26(9):2357–2363

    PubMed  Google Scholar 

  • Jou LD, Mohamed A, Lee DH, Mawad ME (2007) 3D rotational digital subtraction angiography may underestimate intracranial aneurysms: findings from two basilar aneurysms. AJNR Am J Neuroradiol 28(9):1690–1692

    Article  PubMed  Google Scholar 

  • Kallmes DF (2012) Point: CFD – computational fluid dynamics or confounding factor dissemination. AJNR Am J Neuroradiol 33:395–396

    Article  PubMed  CAS  Google Scholar 

  • Karmonik C, Arat A, Benndorf G, Akpek S, Klucznik R, Mawad ME, Strother CM (2004) A technique for improved quantitative characterization of intracranial aneurysms. AJNR Am J Neuroradiol 25(7):1158–1161

    PubMed  Google Scholar 

  • Karmonik C, Benndorf G, Klucznik R, Haykal H, Strother CM (2006) Wall shear stress variations in basilar tip aneurysms investigated with computational fluid dynamics. Conf Proc IEEE Eng Med Biol Soc 1:3214–3217

    Article  PubMed  Google Scholar 

  • Karmonik C, Klucznik R, Benndorf G (2008a) Comparison of velocity patterns in an AComA aneurysm measured with 2D phase contrast MRI and simulated with CFD. Technol Health Care 16(2):119–128

    PubMed  Google Scholar 

  • Karmonik C, Klucznik R, Benndorf G (2008b) Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics–preliminary experience. Rofo 180(3):209–215

    Article  PubMed  CAS  Google Scholar 

  • Karmonik C, Yen C, Grossman RG, Klucznik R, Benndorf G (2009) Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates. Acta Neurochir 151:479–485

    Article  PubMed  Google Scholar 

  • Karmonik C, Chintalapani G, Redel T, Zhang YJ, Diaz O, Klucznik R, Grossman RG (2013) Hemodynamics at the ostium of cerebral aneurysms with relation to post-treatment changes by a virtual flow diverter: a computational fluid dynamics study. Conf Proc IEEE Eng Med Biol Soc 2013:1895–1898

    PubMed  Google Scholar 

  • Kassell NF, Torner JC, Haley EC Jr, Jane JA, Adams HP, Kongable GL (1990) The international cooperative study on the timing of aneurysm surgery. Part 1: overall management results. J Neurosurg 73(1):18–36

    Article  PubMed  CAS  Google Scholar 

  • Kecskemeti S, Johnson K, Wu Y, Mistretta C, Turski P, Wieben O (2012) High resolution three-dimensional cine phase contrast MRI of small intracranial aneurysms using a stack of stars k-space trajectory. J Magn Reson Imaging 35(3):518–527

    Article  PubMed  Google Scholar 

  • Kono K, Terada T (2013) Hemodynamics of 8 different configurations of stenting for bifurcation aneurysms. AJNR Am J Neuroradiol 34(10):1980–1986

    Article  PubMed  CAS  Google Scholar 

  • Kulcsár Z, Augsburger L, Reymond P, Pereira VM, Hirsch S, Mallik AS, Millar J, Wetzel SG, Wanke I, Rüfenacht DA (2012) Flow diversion treatment: intra-aneurismal blood flow velocity and WSS reduction are parameters to predict aneurysm thrombosis. Acta Neurochir (Wien) 154(10):1827–1834

    Article  Google Scholar 

  • Ma B, Harbaugh RE, Raghavan ML (2004) Three-dimensional geometrical characterization of cerebral aneurysms. Ann Biomed Eng 32(2):264–273

    Article  PubMed  Google Scholar 

  • Malek AM, Izumo S (1995) Control of endothelial cell gene expression by flow. J Biomech 28(12):1515–1528

    Article  PubMed  CAS  Google Scholar 

  • Mantha A, Karmonik C, Benndorf G, Strother C, Metcalfe R (2006) Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am J Neuroradiol 27(5):1113–1118

    PubMed  CAS  Google Scholar 

  • Mayer SA, Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, Du YE, Connolly ES Jr (2002) Global and domain-specific cognitive impairment and outcome after subarachnoid hemorrhage. Neurology 59(11):1750–1758

    Article  PubMed  CAS  Google Scholar 

  • Pereira VM, Brina O, Marcos Gonzales A, Narata AP, Bijlenga P, Schaller K, Lovblad KO, Ouared R (2013) Evaluation of the influence of inlet boundary conditions on computational fluid dynamics for intracranial aneurysms: a virtual experiment. J Biomech 46(9):1531–1539

    Article  PubMed  CAS  Google Scholar 

  • Raymond J, Roy D (1997) Safety and efficacy of endovascular treatment of acutely ruptured aneurysms. Neurosurgery 41(6):1235–1245; discussion 1245–1236

    Article  PubMed  CAS  Google Scholar 

  • Ropper AH, Zervas NT (1984) Outcome 1 year after SAH from cerebral aneurysm. Management morbidity, mortality, and functional status in 112 consecutive good-risk patients. J Neurosurg 60(5):909–915

    Article  PubMed  CAS  Google Scholar 

  • Sekhar LN, Heros RC (1981) Origin, growth, and rupture of saccular aneurysms: a review. Neurosurgery 8(2):248–260

    Article  PubMed  CAS  Google Scholar 

  • Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K, Morita A, Kirino T (2004) Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke J Cereb Circ 35(11):2500–2505

    Article  Google Scholar 

  • Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am J Neuroradiol 24(4):559–566

    PubMed  Google Scholar 

  • Strother CM, Jiang J (2012) Intracranial aneurysms, cancer, x-rays, and computational fluid dynamics. AJNR Am J Neuroradiol 33:991–999

    Article  PubMed  CAS  Google Scholar 

  • Stuhne GR, Steinman DA (2004) Finite-element modeling of the hemodynamics of stented aneurysms. J Biomech Eng 126(3):382–387

    Article  PubMed  Google Scholar 

  • Suarez JI, Tarr RW, Selman WR (2006) Aneurysmal subarachnoid hemorrhage. N Engl J Med 354(4):387–396

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Groth A, Bertram M et al (2010) Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms. Med Phys 37:5054–5065

    Article  PubMed  Google Scholar 

  • Sun Q, Groth A, Aach T (2012) Comprehensive validation of computational fluid dynamics simulations of in-vivo blood flow in patient-specific cerebral aneurysms. Med Phys 39:742–754

    Article  PubMed  Google Scholar 

  • Takao H, Murayama Y, Otsuka S, Qian Y, Mohamed A, Masuda S, Yamamoto M, Abe T (2012) Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke 43(5):1436–1439

    Article  PubMed  Google Scholar 

  • Ujiie H, Tachibana H, Hiramatsu O, Hazel AL, Matsumoto T, Ogasawara Y, Nakajima H, Hori T, Takakura K, Kajiya F (1999) Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 45(1):119–129; discussion 129–130

    Article  PubMed  CAS  Google Scholar 

  • Ujiie H, Tamano Y, Sasaki K, Hori T (2001) Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 48(3):495–502; discussion 502–493

    Article  PubMed  CAS  Google Scholar 

  • van Gijn J, Rinkel G (2001) Subarachnoid haemorrhage:diagnosis, causes and management. Brain 1(24):249–278

    Article  Google Scholar 

  • van Ooij P, Guédon A, Poelma C, Schneiders J, Rutten MC, Marquering HA, Majoie CB, VanBavel E, Nederveen AJ (2012) Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. NMR Biomed 25(1):14–26

    Article  PubMed  Google Scholar 

  • Weir B (2002) Unruptured intracranial aneurysms: a review. J Neurosurg 96(1):3–42

    Article  PubMed  Google Scholar 

  • Xu J, Deng B, Fang Y, Yu Y, Cheng J, Wang S, Wang K, Liu JM, Huang Q (2013) Hemodynamic changes caused by flow diverters in rabbit aneurysm models: comparison of virtual and realistic FD deployments based on micro-CT reconstruction. PLoS One 8(6):e66072

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Karmonik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Karmonik, C., Britz, G.W. (2014). Computational Fluid Dynamics and Cerebral Aneurysms. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37393-0_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37393-0_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37393-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics