Skip to main content

Silver Nanowires

  • Living reference work entry
  • First Online:
Handbook of Visual Display Technology
  • 426 Accesses

Abstract

Optoelectronic devices such as displays and touch screens require transparent conductive electrodes (TCEs), which are typically composed of indium tin oxide (ITO) due to its low sheet resistance and high transparency. Despite these preferred properties for TCEs in optoelectronic devices, ITO is limited by poor mechanical properties, scarce indium resources, and expensive manufacturing methods (Kumar and Zhou 2010). Recent efforts to develop an alternative TCE suitable for flexible and robust optoelectronic devices have rendered encouraging results for various materials such as carbon nanotubes, graphene, conductive polymers, metal oxides, and metallic nanowires (Li et al. 2009; Bae et al. 2010; Wu et al. 2004, 2010; Gruner 2006; Rathmell and Wiley 2011; Hecht et al. 2011; Hu et al. 2011). Among these reports, TCEs formed from networks of silver nanowires (Ag NWs) have emerged as a competitive alternative to ITO (Ellmer 2012). The following sections summarize how Ag NW networks may form high-performance TCEs based on their optical, electronic, and mechanical properties by controlling the synthesis of the Ag NWs and the fabrication method of the electrode. This comprehensive review reveals that Ag NW TCEs not only exhibit high transparency, low sheet resistance, and high flexibility but may also introduce unique properties such as optical haze, scratch resistance, and printable manufacturing that open up new avenues, sometimes challenges, for cheaper display devices with higher performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Further Reading

  • Azulai D, Cohen E, Markovich G (2012) Seed concentration control of metal nanowire diameter. Nano Lett 12:5552–5558

    Article  Google Scholar 

  • Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim Y-J, Kim KS, Ozyilmaz B, Ahn J-H, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578

    Article  Google Scholar 

  • Bergin SM, Chen Y-H, Rathmell AR, Charbonneau P, Li Z-Y, Wiley BJ (2012) The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4:1996–2004

    Article  Google Scholar 

  • Chen TL, Ghosh DS, Mkhitaryan V, Pruneri V (2013) Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh. ACS Appl Mater Interfaces 5:11756–11761

    Article  Google Scholar 

  • De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, Boland JJ, Coleman JN (2009) Silver nanowire networks as flexible transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3:1767–1774

    Article  Google Scholar 

  • De S, King PJ, Lyons PE, Khan U, Coleman JN (2010) Size effects and the problem with percolation in nanostructured transparent conductors. ACS Nano 4:7064–7072

    Article  Google Scholar 

  • Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics 6:809–817

    Article  Google Scholar 

  • Fang Z, Zhu H, Preston C, Han X, Li Y, Lee S, Chai X, Chen G, Hu L (2013) Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J Mater Chem C 1:6191

    Article  Google Scholar 

  • Fang Z, Zhu H, Yuan Y, Ha D, Zhu S, Preston C, Huang J, Hu L (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14:765–773

    Article  Google Scholar 

  • Garnett EC, Cai W, Cha JJ, Mahmood F, Connor ST, Greyson Christoforo M, Cui Y, McGehee MD, Brongersma ML (2012) Self-limited plasmonic welding of silver nanowire junctions. Nat Mater 11:241–249

    Article  Google Scholar 

  • Gaynor W, Burkhard GF, McGehee MD, Peumans P (2011) Smooth nanowire/polymer composite transparent electrodes. Adv Mater 23:2905–2910

    Article  Google Scholar 

  • Gruner G (2006) Carbon nanotube films for transparent and plastic electronics. J Mater Chem 16:3533

    Article  Google Scholar 

  • Hauger TC, Al-Rafia SMI, Buriak JM (2013) Rolling silver nanowire electrodes: simultaneously addressing adhesion, roughness, and conductivity. ACS Appl Mater Interfaces 5:12663–12671

    Article  Google Scholar 

  • Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23:1482–1513

    Article  Google Scholar 

  • Hu L, Hecht DS, Gruner G (2004) Percolation in transparent and conducting carbon nanotube networks. Nano Lett 4(12):2513–2517

    Article  Google Scholar 

  • Hu L, Kim HS, Lee J, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4(5):2955–2963

    Article  Google Scholar 

  • Hu L, Wu H, Cui Y (2011) Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull 36:760–765

    Article  Google Scholar 

  • Jin Y, Deng D, Cheng Y, Kong L, Xiao F (2014) Annealing-free and strongly adhesive silver nanowire networks with long-term reliability by introduction of a nonconductive and biocompatible polymer binder. Nanoscale 6:4812–4818

    Article  Google Scholar 

  • Jiu J, Nogi M, Sugahara T, Tokuno T, Araki T, Komoda N, Suganuma K, Uchida H, Shinozaki K (2012) Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. J Mater Chem 22:23561

    Article  Google Scholar 

  • Jiu J, Sugahara T, Nogi M, Araki T, Suganuma K, Uchida H, Shinozaki K (2013) High-intensity pulse light sintering of silver nanowire transparent films on polymer substrates: the effect of the thermal properties of substrates on the performance of silver films. Nanoscale 5:11820–11828

    Article  Google Scholar 

  • Keblinski P, Cleri F (2004) Contact resistance in percolating networks. Phys Rev Lett B 69:184201

    Article  Google Scholar 

  • Kim T, Canlier A, Kim GH, Choi J, Park M, Han SM (2013) Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Appl Mater Interfaces 5:788–794

    Article  Google Scholar 

  • Korte KE, Skrabalak SE, Xia Y (2008) Rapid synthesis of silver nanowires through a CuCl− of CuCl2 − mediated polyol process. J Mater Chem 18:437–441

    Article  Google Scholar 

  • Kumar A, Zhou C (2010) The race to replace tin-doped indium oxide: which material will win? ACS Nano 4:11–14

    Article  Google Scholar 

  • Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato J-P (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24:452001

    Article  Google Scholar 

  • Lee J-Y, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692

    Article  Google Scholar 

  • Lee J, Lee P, Lee H, Lee D, Lee SS, Ko SH (2012a) Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4:6408–6414

    Article  MATH  Google Scholar 

  • Lee P, Lee J, Lee H, Yeo J, Hong S, Nam KH, Lee D, Lee SS, Ko SH (2012b) Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater 24:3326–3332

    Article  Google Scholar 

  • Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363

    Article  Google Scholar 

  • Li L, Yu Z, Hu W, Chang C, Chen Q, Pei Q (2011) Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode. Adv Mater 23:5563–5567

    Article  Google Scholar 

  • Lippens P, Muehlfeld U (2012) Indium tin oxide (ITO): sputter deposition processes. In: Chen J, Cranton W, Fihn M (eds) Handbook of visual display technology. Springer, Berlin/Heidelberg

    Google Scholar 

  • Liu C-H, Yu X (2011) Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res Lett 6:75

    Article  Google Scholar 

  • Madaria AR, Kumar A, Ishikawa FN, Zhou C (2010) Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res 3:564–573

    Article  Google Scholar 

  • Majumder M, Rendall C, Li M, Behabtu N, Eukel JA, Hauge RH, Schmidt HK, Pasquali M (2010) Insights into the physics of spray coating of SWNT films. Chem Eng Sci 65:2000–2008

    Article  Google Scholar 

  • Miller MS, O’Kane JC, Niec A, Carmichael RS, Carmichael TB (2013) Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics. ACS Appl Mater Interfaces 5:10165–10172

    Article  Google Scholar 

  • Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82

    Article  Google Scholar 

  • Mutiso RM, Sherrott MC, Rathmell AR, Wiley BJ, Winey KI (2013) Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors. ACS Nano 7:7654–7663

    Article  Google Scholar 

  • Park S-E, Kim S, Lee D-Y, Kim E, Hwang J (2013) Fabrication of silver nanowire transparent electrodes using electrohydrodynamic spray deposition for flexible organic solar cells. J Mater Chem A 1:14286

    Article  Google Scholar 

  • Preston C, Xu Y, Han X, Munday JN, Hu L (2013) Optical haze of transparent and conductive silver nanowire films. Nano Res 6:461–468

    Article  Google Scholar 

  • Preston C, Fang Z, Murray J, Zhu H, Dai J, Munday JN, Hu L (2014) Silver nanowire transparent conducting paper-based electrode with high optical haze. J Mater Chem C 2:1248

    Article  Google Scholar 

  • Rathmell AR, Wiley BJ (2011) The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv Mater 23:4798–4803

    Article  MATH  Google Scholar 

  • Sepulveda-Mora SB, Cloutier SG (2012) Figures of merit for high-performance transparent electrodes using dip-coated silver nanowire networks. J Nanomater 2012:1–7

    Article  Google Scholar 

  • Sun Y (2010) Silver nanowires – unique templates for functional nanostructures. Nanoscale 2:1626–1642

    Article  Google Scholar 

  • Tokuno T, Nogi M, Karakawa M, Jiu J, Nge TT, Aso Y, Suganuma K (2011) Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res 4:1215–1222

    Article  Google Scholar 

  • Tokuno T, Nogi M, Jiu J, Suganuma K (2012) Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process. Nanoscale Res Lett 7:281

    Article  Google Scholar 

  • Van de Groep J, Spinelli P, Polman A (2012) Transparent conducting silver nanowire networks. Nano Lett 12:3138–3144

    Article  Google Scholar 

  • Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276

    Article  Google Scholar 

  • Wu H, Hu L, Rowell MW, Kong D, Cha JJ, McDonough JR, Zhu J, Yang Y, McGehee MD, Cui Y (2010) Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett 10:4242–4248

    Article  MATH  Google Scholar 

  • Zhu R, Chung C-H, Cha KC, Yang W, Zheng YB, Zhou H, Song T-B, Chen C-C, Weiss PS, Li G, Yang Y (2011) Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 5:9877–9882

    Article  Google Scholar 

  • Zhu S, Gao Y, Hu B, Li J, Su J, Fan Z, Zhou J (2013a) Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 24:335202

    Article  Google Scholar 

  • Zhu H, Parvinian S, Preston C, Vaaland O, Ruan Z, Hu L (2013b) Transparent nanopaper with tailored optical properties. Nanoscale 5:3787–3792

    Article  Google Scholar 

  • Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7:269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Preston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Preston, C., Hu, L. (2015). Silver Nanowires. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35947-7_180-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35947-7_180-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-35947-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics