Skip to main content

Endotracheal Tube Biofilm and Ventilator-Associated Pneumonia

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2013

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 2757 Accesses

Abstract

Ventilator associated pneumonia (VAP) is one of the most relevant infections in intensive care unit (ICU) patients, and its occurrence increases with duration of mechanical ventilation. It is widely accepted that VAP is associated with increased duration of ventilation, hospital stay and health care costs [1]. However, the impact of VAP on mortality is currently under debate; in a cohort of patients with acute respiratory distress syndrome (ARDS), VAP diagnosis was not associated with increased mortality after adjustment for factors, such as age or severity at admission [2]. Because of the pathogenesis of VAP, in recent years, focus has moved to the endotracheal tube (ETT), to the extent that some authors have suggested changing the name from ventilator-associated to ETT-associated pneumonia [3]. When the ETT is in place, the cough reflex is not effective; cuff inflation reduces secretion clearance by altering ciliary activity, as shown in animal models [4]. One of the main mechanisms to explain the inoculum of pathogens into the lungs is related to the presence of a biofilm on the inner lumen of the ETT; microbes can detach from the biofilm and reach the lower airways, leading to lung colonization and VAP. Key biofilm characteristics and possible VAP preventive measures focusing on biofilm reduction will be presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chastre J, Fagon JY (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165:867–903

    Article  PubMed  Google Scholar 

  2. Forel JM, Voillet F, Pulina D et al (2012) Ventilator-associated pneumonia and ICU mortality in severe ARDS patients ventilated according to a lung-protective strategy. Crit Care 16:R65

    Article  PubMed  Google Scholar 

  3. Pneumatikos IA, Dragoumanis CK, Bouros DE (2009) Ventilator-associated pneumonia or endotracheal tube-associated pneumonia? An approach to the pathogenesis and preventive strategies emphasizing the importance of endotracheal tube. Anesthesiology 110:673–680

    Article  PubMed  Google Scholar 

  4. Sackner MA, Hirsch J, Epstein S (1975) Effect of cuffed endotracheal tubes on tracheal mucous velocity. Chest 68:774–777

    Article  PubMed  CAS  Google Scholar 

  5. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  PubMed  CAS  Google Scholar 

  6. Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392

    Article  PubMed  CAS  Google Scholar 

  7. Wilson A, Gray D, Karakiozis J, Thomas J (2012) Advanced endotracheal tube biofilm stage, not duration of intubation, is related to pneumonia. J Trauma Acute Care Surg 72:916–923

    PubMed  Google Scholar 

  8. Gorman SP, McGovern JG, Woolfson AD, Adair CG, Jones DS (2001) The concomitant development of poly(vinyl chloride)-related biofilm and antimicrobial resistance in relation to ventilator-associated pneumonia. Biomaterials 22:2741–2747

    Article  PubMed  CAS  Google Scholar 

  9. Sottile FD, Marrie TJ, Prough DS et al (1986) Nosocomial pulmonary infection: possible etiologic significance of bacterial adhesion to endotracheal tubes. Crit Care Med 14:265–270

    Article  PubMed  CAS  Google Scholar 

  10. Bauer TT, Torres A, Ferrer R, Heyer CM, Schultze-Werninghaus G, Rasche K (2002) Biofilm formation in endotracheal tubes. Association between pneumonia and the persistence of pathogens. Monaldi Arch Chest Dis 57:84–87

    PubMed  CAS  Google Scholar 

  11. Inglis TJ (1993) Evidence for dynamic phenomena in residual tracheal tube biofilm. Br J Anaesth 70:22–24

    Article  PubMed  CAS  Google Scholar 

  12. Inglis TJ, Lim TM, Ng ML, Tang EK, Hui KP (1995) Structural features of tracheal tube biofilm formed during prolonged mechanical ventilation. Chest 108:1049–1052

    Article  PubMed  CAS  Google Scholar 

  13. Wilson AM, Gray DM, Thomas JG (2009) Increases in endotracheal tube resistance are unpredictable relative to duration of intubation. Chest 136:1006–1013

    Article  PubMed  Google Scholar 

  14. Gil-Perotin S, Ramirez P, Marti V et al (2012) Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept. Crit Care 16:R93

    Article  PubMed  Google Scholar 

  15. Adair CG, Gorman SP, Feron BM et al (1999) Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25:1072–1076

    Article  PubMed  CAS  Google Scholar 

  16. Kojic EM, Darouiche RO (2004) Candida infections of medical devices. Clin Microbiol Rev 17:255–267

    Article  PubMed  Google Scholar 

  17. Peleg AY, Hogan DA, Mylonakis E (2010) Medically important bacterial-fungal interactions. Nat Rev Microbiol 8:340–349

    Article  PubMed  CAS  Google Scholar 

  18. Azoulay E, Timsit JF, Tafflet M et al (2006) Candida colonization of the respiratory tract and subsequent pseudomonas ventilator-associated pneumonia. Chest 129:110–117

    Article  PubMed  Google Scholar 

  19. Cairns S, Thomas JG, Hooper SJ et al (2011) Molecular analysis of microbial communities in endotracheal tube biofilms. PLoS One 6:e14759

    Article  PubMed  CAS  Google Scholar 

  20. Tang H, Cao T, Liang X et al (2009) Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis. J Biomed Mater Res A 88:454–463

    PubMed  Google Scholar 

  21. Machado MC, Tarquinio KM, Webster TJ (2012) Decreased Staphylococcus aureus biofilm formation on nanomodified endotracheal tubes: a dynamic airway model. Int J Nanomedicine 7:3741–3750

    PubMed  Google Scholar 

  22. Durmus NG, Taylor EN, Inci F, Kummer KM, Tarquinio KM, Webster TJ (2012) Fructose-enhanced reduction of bacterial growth on nanorough surfaces. Int J Nanomedicine 7:537–545

    PubMed  CAS  Google Scholar 

  23. Berra L, Curto F, Li Bassi G et al (2008) Antimicrobial-coated endotracheal tubes: an experimental study. Intensive Care Med 34:1020–1029

    Article  PubMed  Google Scholar 

  24. Raad II, Reitzel RA, Mohamed JA et al (2011) The prevention of biofilm colonization by multidrug-resistant pathogens that cause ventilator-associated pneumonia with antimicrobial-coated endotracheal tubes. Biomaterials 32:2689–2694

    Article  PubMed  CAS  Google Scholar 

  25. Kollef MH, Afessa B, Anzueto A et al (2008) Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. JAMA 300:805–813

    Article  PubMed  CAS  Google Scholar 

  26. Kolobow T, Berra L, Li Bassi G, Curto F (2005) Novel system for complete removal of secretions within the endotracheal tube: the Mucus Shaver. Anesthesiology 102:1063–1065

    Article  PubMed  Google Scholar 

  27. Berra L, Coppadoro A, Bittner EA et al (2012) A clinical assessment of the Mucus Shaver: a device to keep the endotracheal tube free from secretions. Crit Care Med 40:119–124

    Article  PubMed  Google Scholar 

  28. Berra L, Curto F, Li Bassi G, Laquerriere P, Baccarelli A, Kolobow T (2006) Antibacterial-coated tracheal tubes cleaned with the Mucus Shaver: a novel method to retain long-term bactericidal activity of coated tracheal tubes. Intensive Care Med 32:888–893

    Article  PubMed  Google Scholar 

  29. Biel MA, Sievert C, Usacheva M et al (2011) Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy. Lasers Surg Med 43:586–590

    PubMed  Google Scholar 

  30. Volpe MS, Adams AB, Amato MB, Marini JJ (2008) Ventilation patterns influence airway secretion movement. Respir Care 53:1287–1294

    PubMed  Google Scholar 

  31. Li Bassi G, Zanella A, Cressoni M, Stylianou M, Kolobow T (2008) Following tracheal intubation, mucus flow is reversed in the semirecumbent position: possible role in the pathogenesis of ventilator-associated pneumonia. Crit Care Med 36:518–525

    Article  PubMed  Google Scholar 

  32. Panigada M, Berra L, Greco G, Stylianou M, Kolobow T (2003) Bacterial colonization of the respiratory tract following tracheal intubation-effect of gravity: an experimental study. Crit Care Med 31:729–737

    Article  PubMed  CAS  Google Scholar 

  33. Berra L, Sampson J, Fumagalli J, Panigada M, Kolobow T (2011) Alternative approaches to ventilator-associated pneumonia prevention. Minerva Anestesiol 77:323–333

    PubMed  CAS  Google Scholar 

  34. Drakulovic MB, Torres A, Bauer TT, Nicolas JM, Nogue S, Ferrer M (1999) Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet 354:1851–1858

    Article  PubMed  CAS  Google Scholar 

  35. Mauri T, Berra L, Kumwilaisak K et al (2010) Lateral-horizontal patient position and horizontal orientation of the endotracheal tube to prevent aspiration in adult surgical intensive care unit patients: a feasibility study. Respir Care 55:294–302

    PubMed  Google Scholar 

  36. Gravity VAP-trial. Available at: http://compartint.net/gravityvaptrial/joomla. Accessed Oct 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Berra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coppadoro, A., Thomas, J.G., Berra, L. (2013). Endotracheal Tube Biofilm and Ventilator-Associated Pneumonia. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics