Skip to main content

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 2745 Accesses

Abstract

Severe sepsis, defined as acute organ dysfunction secondary to infection, and septic shock, defined as severe sepsis plus hypotension not reversed with fluid resuscitation, originate in the systemic inflammatory response following infection and lead to cardiovascular and organ dysfunction. Sepsis is a major cause of hospital mortality and a considerable economic burden [1]. Resuscitation in sepsis is initially based on goal-directed fluid therapy. This modality remains controversial [2] and a recent randomized trial indicated that bolus fluid therapy in a large population of children with sepsis in a resource-challenged environment [3] increased mortality irrespective of the type of fluid. Nevertheless, this remains an active area of clinical investigation, as evidenced by the large number of registered relevant trials on www.clinicaltrials.gov. The timing, rather than the type, of fluid therapy has been proposed as being crucial [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burchardi H, Schneider H (2004) Economic aspects of severe sepsis: a review of intensive care unit costs, cost of illness and cost effectiveness of therapy. Pharmacoeconomics 22:793–813

    Article  PubMed  Google Scholar 

  2. Hilton A, Bellomo R (2012) A critique of fluid bolus resuscitation in severe sepsis. Crit Care 16:302

    Article  PubMed  Google Scholar 

  3. Maitland K, Kiguli S, Opoka RO et al (2011) Mortality after fluid bolus in African children with severe infection. N Engl J Med 364:2483–2495

    Article  PubMed  CAS  Google Scholar 

  4. Rivers EP, Katranji M, Jaehne KA et al (2012) Early interventions in severe sepsis and septic shock: a review of the evidence one decade later. Minerva Anestesiol 78:712–724

    PubMed  CAS  Google Scholar 

  5. Finfer S, Liu B, Taylor C et al (2010) Resuscitation fluid use in critically ill adults: an international cross-sectional study in 391 intensive care units. Crit Care 14:R185

    Article  PubMed  Google Scholar 

  6. Trof RJ, Sukul SP, Twisk JWR, Girbes ARJ, Groeneveld ABJ (2010) Greater cardiac response of colloid than saline fluid loading in septic and non-septic critically ill patients with clinical hypovolaemia. Intensive Care Med 36:697–701

    Article  PubMed  CAS  Google Scholar 

  7. Perel P, Roberts I (2012) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 6:CD000567

    PubMed  Google Scholar 

  8. Cochrane Injuries Group Albumin Reviewers (1998) Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ 317:235–240

    Article  Google Scholar 

  9. Vincent J-L, Wilkes MM, Navickis RJ (2003) Safety of human albumin – serious adverse events reported worldwide. Br J Anaesth 91:625–630

    Article  PubMed  CAS  Google Scholar 

  10. The SAFE Study Investigators (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256

    Article  Google Scholar 

  11. Schortgen F, Girou E, Deye N, Brochard L (2008) The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med 34:2157–2168

    Article  PubMed  Google Scholar 

  12. Wiedermann C, Dunzendorfer S, Gaioni L, Zaraca F, Joannidis M (2010) Hyperoncotic colloids and acute kidney injury: a meta-analysis of randomized trials. Crit Care 14:R191

    Article  PubMed  Google Scholar 

  13. Van der Linden P, Ickx B (2006) The effects of colloid solutions on hemostasis. Can J Anesth 53:S30–S39

    Article  PubMed  Google Scholar 

  14. Spronk PE, Zandstra DF, Ince C (2004) Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care 8:462–468

    Article  PubMed  Google Scholar 

  15. Quinlan GJ, Martin GS, Evans TW (2005) Albumin: Biochemical properties and therapeutic potential. Hepatology 41:1211–1219

    Article  PubMed  CAS  Google Scholar 

  16. Ernest D, Belzberg AS, Dodek PM (1999) Distribution of normal saline and 5 % albumin infusions in septic patients. Crit Care Med 27:46

    Article  PubMed  CAS  Google Scholar 

  17. The SAFE Study Investigators (2010) Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med 37:86–96

    Article  Google Scholar 

  18. Delaney AP, Dan A, McCaffrey J, Finfer S (2011) The role of albumin as a resuscitation fluid for patients with sepsis: A systematic review and meta-analysis. Crit Care Med 39:386–391

    Article  PubMed  CAS  Google Scholar 

  19. Charpentier J, Mira J (2011) Efficacy and tolerance of hyperoncotioc albumin administration in septic patients: The EARSS Study. Intensive Care Med (Suppl 1):115 ((abst))

    Google Scholar 

  20. Caironi P (2012) Rimpiazzo dei fluidi nel paziente critico: lo studio Albios. Available at: http://www.smartonweb.org/presentazione/index.php?presentazione_video=si&id=365. Accessed August 2012

    Google Scholar 

  21. Jungheinrich C, Neff TA (2004) Pharmacokinetics of hydroxyethyl starch. Clin Pharmacokinet 44:681–99

    Article  Google Scholar 

  22. Dart AB, Mutter TC, Ruth CA, Taback SP (2010) Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev CD007594

    Google Scholar 

  23. Zarychanski R, Turgeon AF, Fergusson DA et al (2009) Renal outcomes and mortality following hydroxyethyl starch resuscitation of critically ill patients: systematic review and meta-analysis of randomized trials. Open Med 3:e196

    PubMed  Google Scholar 

  24. Perner A, 6S Trial Group and the Scandinavian Critical Care Trials Group (2012) Hydroxyethyl starch 130/0.4 versus Ringer’s acetate in severe sepsis. N Engl J Med 27:1–11

    Google Scholar 

  25. Reinhart K, Perner A, Sprung CL et al (2012) Consensus statement of the ESICM task force on colloid volume therapy in critically ill patients. Intensive Care Med 38:368–383

    Article  PubMed  CAS  Google Scholar 

  26. Shafer SL (2011) Shadow of doubt. Anesth Analg 112:498–500

    Article  PubMed  Google Scholar 

  27. Hartog CS, Kohl M, Reinhart K (2011) A systematic review of third-generation hydroxyethyl starch (HES 130/0.4) in resuscitation: safety not adequately addressed. Anesth Analg 112:635–645

    Article  PubMed  CAS  Google Scholar 

  28. Gattas DJ, Dan A, Myburgh J, Billot L, Lo S, Finfer S (2012) Fluid resuscitation with 6 % hydroxyethyl starch (130/0.4) in acutely ill patients: an updated systematic review and meta-analysis. Anesth Analg 114:159–169

    Article  PubMed  Google Scholar 

  29. Hartog CS, Skupin H, Natanson C, Sun J, Reinhart K (2012) Systematic analysis of hydroxyethyl starch (HES) reviews: proliferation of low-quality reviews overwhelms the results of well-performed meta-analyses. Intensive Care Med 38:1258–1271

    Article  PubMed  CAS  Google Scholar 

  30. Faraoni D, De Ville A, Hofer A, Heschi M, Gombotz H, van der Linden P (2011) Efficacy and safety of 6 % HES 130/0.4 versus 5 % HA for volume replacement during pediatric cardiac surgery. Available at: http://www.asaabstracts.com/strands/asaabstracts/abstract.htm;jsessionid=E0BC05F26723C658B921FC24D398E740?year=2011&index=16&absnum=4705. Accessed October 2012

    Google Scholar 

  31. Guidet B, Martinet O, Boulain T et al (2012) Assessment of hemodynamic efficacy and safety of 6 % hydroxyethylstarch 130/0.4 versus 0.9 % NaCl fluid replacement in patients with severe sepsis: The CRYSTMAS study. Crit Care 16:R94

    Article  PubMed  Google Scholar 

  32. Food and Drug Administration (2012) Approved Product Information for Voluven Available at: http://www.fda.gov/downloads/BiologicsBloodVaccines/BloodBloodProducts/ ApprovedProducts/NewDrugApplicationsNDAs/UCM083138.pdf. Accessed October 2012

    Google Scholar 

  33. Caldwell DM, Ades AE, Higgins JPT (2005) Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ 331:897–900

    Article  PubMed  Google Scholar 

  34. Béchir M, Puhan MA, Neff SB et al (2010) Early fluid resuscitation with hyperoncotic hydroxyethyl starch 200/0.5 (10 %) in severe burn injury. Crit Care 14:R123

    Article  PubMed  Google Scholar 

  35. Brunkhorst FM, Engel C, Bloos F et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139

    Article  PubMed  CAS  Google Scholar 

  36. Dolecek M, Svoboda P, Kantorová I (2009) Therapeutic influence of 20 % albumin versus 6 % hydroxyethylstarch on extravascular lung water in septic patients: A randomized controlled trial. Hepatogastroenterology 56:1622–1628

    PubMed  CAS  Google Scholar 

  37. Friedman G, Jankowski S, Shahla M (2008) Hemodynamic effects of 6 % and 10 % hydroxyethyl starch solutions versus 4 % albumin solution in septic patients. J Clin Anesth 20:528–533

    Article  PubMed  CAS  Google Scholar 

  38. Maitland K, Pamba A, English M et al (2005) Pre-transfusion management of children with severe malarial anaemia: a randomised controlled trial of intravascular volume expansion. Br J Hematol 128:393–400

    Article  Google Scholar 

  39. Maitland K, Pamba A, English M et al (2005) Randomized trial of volume expansion with albumin or saline in children with severe malaria: preliminary evidence of albumin benefit. Clin Infect Dis 40:538–545

    Article  PubMed  Google Scholar 

  40. McIntyre LA, Fergusson D, Cook D, Rankin N, Dhingra V, Granton J (2008) Fluid resuscitation in the management of early septic shock (FINESS): a randomized controlled feasibility trial. Can J Anaesth 55:819–826

    Article  PubMed  Google Scholar 

  41. Metildi L, Shackford S, Virgilio R, Peters R (1984) Crystalloid versus colloid in fluid resuscitation of patients with severe pulmonary insufficiency. Surg Gynecol Obstet 158:207–212

    PubMed  CAS  Google Scholar 

  42. Nagy K, Davis J, Flides J, Roberts R, Barrett J (1993) A comparison of pentastarch and lactated Ringer’s solution in the resuscitation of patients with hemorrhagic shock. Circ Shock 40:289–294

    PubMed  CAS  Google Scholar 

  43. Rackow E, Falk J, Fein I (1983) Fluid resuscitation in circulatory shock: A comparison of the cardiorespiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med 11:839–850

    Article  PubMed  CAS  Google Scholar 

  44. Rackow E, Mecher C, Astiz M, Griffel M, Falk J, Weil M (1989) Effects of pentastarch and albumin infusion on cardiorespiratory function and coagulation in patients with severe sepsis and systemic hypoperfusion. Crit Care Med 17:394–398

    Article  PubMed  CAS  Google Scholar 

  45. Veneman TF, Nijhuis JO, Woittiez AJJ (2004) Human albumin and starch administration in critically ill patients: a prospective randomized clinical trial. Wien Klin Wochenschr 116:305–309

    Article  PubMed  CAS  Google Scholar 

  46. Younes R, Yin K, Amino C, Itinoshe M, Rocha e Silva M, Birolini D (1998) Use of pentastarch solution in the treatment of patients with hemorrhagic hypovolemia: randomized phase II study in the emergency room. World J Surg 22:2–5

    Article  PubMed  CAS  Google Scholar 

  47. Coughlin MT, Angus DC (2003) Economic evaluation of new therapies in critical illness. Crit Care Med 31:S7

    Article  PubMed  Google Scholar 

  48. Farrugia A, Balboni S, Cassar J, Kimber MC (2003) Colloid treatment in sepsis patients in intensive care – use of albumin vs hydroxyethyl starch (HES) is cost-effective in a decision analysis model. Vox Sang 103(Suppl s1):P547 ((abst))

    Google Scholar 

  49. Bernard K, Black E, Remtulla S, Schwenger E, Dalen D (2010) Should hospital pharmacy drug budgets be the responsibility of each individual department in an institution, or should such budgets be controlled centrally by the pharmacy department? Can J Hosp Pharm 63:330–332

    Google Scholar 

  50. Woodcock J, Griffin J, Behrman R et al (2007) The FDA’s assessment of follow-on protein products: a historical perspective. Nat Rev Drug Discov 6:437–442

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Megha Bansal performed the meta-analyses described in this work. Megha Bansal, Sonia Balboni and Mary Clare Kimber contributed to the decision analysis model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Farrugia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farrugia, A., Martin, G., Bult, M. (2013). Colloids for Sepsis: Effectiveness and Cost Issues. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics