Skip to main content

MRI Facility-Based Molecular Imaging

  • Chapter
Molecular Imaging

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 3675 Accesses

Abstract

Based on principle, magnetic resonance imaging (MRI) is a direct molecular imaging modality because all of the possible contrasts of MRI are formed by the decay process after excitation of the polarized spin nuclei in resonance in an imaged subject. The spin nuclei exist in a molecule, such as a proton in a water molecule. The polarized and excited spin nuclei have the same spin frequency fixed by the Larmor equation, which also determines the relation between the center frequency ω and B 0:

$$ \omega = \gamma B_0 $$
((8.1))

where γ is a constant of the gyromagnetic ratio with a value of γ=2.68×108 rad/s/T or after normalization by 2π, then the value of γ=42.6 MHz/T for proton spin. The center frequency ω is usually in a radio frequency (RF) range and the polarized spin nucleus balanced in B 0 can be excited by the RF wave, which is defined as B 1. In order to position the interaction event of the excited spin nucleus, a gradient field of G is needed, which fixes the positions in a Cartesian coordinate system for the imaged subject. The details of the principle, scheme and key technologies for MRI can be found in many references, and some of these can be seen in [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bao, S. (2004). On Modern Medical Imaging Physics. Peking University Medical Press.

    Google Scholar 

  2. Haacke, E. M., Y. Xu, Y. C. N. Cheng & J. Reichenbach (2004). “Susceptibility Weighted Imaging (SWI)”, Magnetic Resonance in Medicine 52: 612–618.

    Article  PubMed  Google Scholar 

  3. Einstein, A. (1989). On a Heuristic Point of View Concerning the Production and Transformation of Light. Princeton University Press.

    Google Scholar 

  4. Le, B. D., R. Turner & P. Douek (1993). “Is water diffusion restricted in human white matter? An echo planar NMR imaging study”, NeuroReport 4: 887–890.

    Article  Google Scholar 

  5. Clark, C. A., M. Hedehus & M. E. Moseley (2001). “Diffusion time dependence of the apparent diffusion tensor in healthy human brain and white matter disease”, Magnetic Resonance in Medicine 45: 1126–1129.

    Article  PubMed  CAS  Google Scholar 

  6. Donald, W. M., A. M. Elizabeth & R. P. Martin (2003). MRI From Picture to Proton. Cambridge University Press.

    Google Scholar 

  7. G. Paolo, V. Ragini & L. Seungkoo (2007). “Diffusion-tensor MR imaging and tractography: Exploring brain microstructure and connectivity”, Radiology 245: 367–384.

    Article  Google Scholar 

  8. Gao, S., X. Wang & S. Bao (2006). “Effect of diffusion time and diffusion gradient strength on the mean diffusivity of water molecules in healthy human brain”, Progress in Nature Science 16: 706–711.

    Article  Google Scholar 

  9. Inglis, B. A., E. Bossart & D. Buckley (2001). “Visualization of neural tissue water compartments using biexponential diffusion tensor MRI”, Magnetic Resonance in Medicine 45: 580–587.

    Article  PubMed  CAS  Google Scholar 

  10. David, N., F. Raymond & H. Baslow (2003). “The apparent dependence of the diffusion coefficient of N-acetylaspartate upon magnetic field strength: Evidence of an interaction with NMR methodology”, NMR in Biology 16: 468–474.

    Article  Google Scholar 

  11. Valette, J. & M. Guillermier (2005). “Optimized diffusion-weighted spectroscopy for measuring brain glutamate apparent diffusion coefficient on a whole-body MR system”, NMR in Biology 18: 527–533.

    Article  CAS  Google Scholar 

  12. Graaf, D., K. Braun & K. Nicolay (1999). “Single-scan diffusion trace 1H-NMR spectroscopy”, Magnetic Resonance in Medicine 1827.

    Google Scholar 

  13. Gao, S., Z. Zu & S. Bao (2008). “Interleaving gradient magnetic field method for diffusion weighted spectroscopy”, Chinese Physics Letter 25(1): 325.

    Article  CAS  Google Scholar 

  14. Kim, S. (1995). “Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: Application to functional mapping”, Magnetic Resonance in Medicine 34: 293–301.

    Article  PubMed  CAS  Google Scholar 

  15. Lai, S., J. Wang & G. Jahng (2001). “FAIR exempting separate T1 measurement (FAIREST): A novel technique for online quantitative perfusion imaging and multi-contrast fMRI”, NMR in Biomedicine 14: 507–516.

    Article  PubMed  CAS  Google Scholar 

  16. Zou, R., X. Zhang, S. Bao, C. Xie, W. Sun & S. Lai (2005). “FAIREST Perfusion imaging and primary application”, Progress in Nature Science 15(9): 1058–1063.

    Google Scholar 

  17. Zhou, K. & M. Zaitsev (2009). “Reliable two-dimensional phase unwrapping method using region growing and local linear estimation”, Magnetic Resonance in Medicine 62: 1085–1090.

    Article  PubMed  Google Scholar 

  18. Li, J., Y. Yu, Y. Zhang & S. Bao (2009). “A clinically feasible method to estimate pharmacokinetic parameters in breast cancer”, Medical Physics 36(8): 3786–3794.

    Article  PubMed  CAS  Google Scholar 

  19. Huang, X., Q. Wang & Y. Xu (2006). “Probability parametric imaging with DCE-MRI data to identify prostate cancer in peripheral zone”, Progress in Natural Science 16(9): 948–953.

    Article  Google Scholar 

  20. Quan, H., X. Wang & S. Bao (2005). “Diagnosis of prostate cancer by quantitative analysis of 3DMRSI data: A new model”, Progress in Natural Science 15(4): 320–324.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bao, S., Song, G. (2013). MRI Facility-Based Molecular Imaging. In: Molecular Imaging. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34303-2_8

Download citation

Publish with us

Policies and ethics