Skip to main content

Medical Image Processing and Analysis

  • Chapter
Molecular Imaging

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

Generally, medical imaging refers to the specialized techniques and instrumentation used to create images or information of the human body for clinical purposes or medical science (including the study of normal anatomy and function)[1]. For clinical purposes, medical images of specific tissues or organs are obtained to assist in diagnosing a disease or specific pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dhawan, A. P., H. K. Huang & D. S. Kim (2008). Principles and Advanced Methods in Medical Imaging and Image Analysis. World Scientific Pub Co Inc.

    Google Scholar 

  2. Pham, D. L., C. Xu & J. L. Prince (2000). “Current methods in medical image segmentation 1”, Biomedical Engineering 2(1): 315.

    CAS  Google Scholar 

  3. Sahoo, P. K., et al. (1988). “A survey of thresholding techniques”, Computer Vision, Graphics and Image Processing 41(2): 233–260.

    Article  Google Scholar 

  4. Zhang, Y. J. & J. J. Gerbrands (1991). “Transition region determination based thresholding”, Pattern Recognition Letters 12(1): 13–23.

    Article  CAS  Google Scholar 

  5. Li, H. D., et al. (1995). “Markov random field for tumor detection in digital mammography”, Medical Imaging 14(3): 565–576.

    Article  PubMed  CAS  Google Scholar 

  6. Lee, C., et al. (1998). “Unsupervised connectivity-based thresholding segmentation of midsagittal brain MR images”, Computers in Biology and Medicine 28(3): 309–338.

    Article  PubMed  CAS  Google Scholar 

  7. Manousakas, I. N., et al. (1998). “Split-and-merge segmentation of magnetic resonance medical images: Performance evaluation and extension to three dimensions”, Computers and Biomedical Research 31(6): 393–412.

    Article  PubMed  CAS  Google Scholar 

  8. Pohlman, S., et al. (1996). “Quantitative classification of breast tumors in digitized mammograms”, Medical Physics 23: 1337.

    Article  PubMed  CAS  Google Scholar 

  9. Vincent, L. & P. Soille (1991). “Watersheds in digital spaces: an efficient algorithm based on immersion simulations”, IEEE Transactions on Pattern Analysis and Machine Intelligence 136(6): 583–598.

    Article  Google Scholar 

  10. Barrett, W. A. & E. N. Mortensen (1997). “Interactive live-wire boundary extraction”, Medical Image Analysis 1(4): 331–341.

    Article  PubMed  CAS  Google Scholar 

  11. West, D. (2001). Introduction to Graph Theory. Prentice Hall Upper Saddle River.

    Google Scholar 

  12. McInerney, T. & D. Terzopoulos (1996). “Deformable models in medical image analysis: a survey”, Medical Image Analysis 1(2): 91–108.

    Article  PubMed  CAS  Google Scholar 

  13. Maintz, J. B. A. & M. A. Viergever (1998). “A survey of medical image registration”, Medical Image Analysis 2(1): 1–36.

    Article  PubMed  CAS  Google Scholar 

  14. Van den Elsen, P. A., et al. (1995). “Automatic registration of CT and MR brain images using correlation of geometrical features”, IEEE Transactions on Medical Imaging 14(2): 384–396.

    Article  PubMed  Google Scholar 

  15. Zitová, B. & J. Flusser (2003). “Image registration methods: a survey”, Image and Vision Computing 21(11): 977–1000.

    Article  Google Scholar 

  16. Besl, P. J. & N. D. McKay (1992). “A method for registration of 3D shapes”, IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2): 239–256.

    Article  Google Scholar 

  17. Umeyama, S. (1991). “Least-squares estimation of transformation parameters between two point patterns”, IEEE Transactions on Pattern Analysis and Machine Intelligence 13(4): 376–380.

    Article  Google Scholar 

  18. Hajnal, J. V., D. J. Hawkes & D. L. G. Hill (2001). “Medical image registration”, Physics in Medicine and Biology 46(3): R1.

    Article  Google Scholar 

  19. Ibáez, L., et al. (2003). The ITK software guide. Kitware Inc.

    Google Scholar 

  20. Holden, M., et al. (2000). “Voxel similarity measures for 3D serial MR brain image registration”, IEEE Transactions on Medical Imaging 19(2): 94–102.

    Article  PubMed  CAS  Google Scholar 

  21. Colignon, A., et al. (1995). “Automated multi-modality image registration based on information theory”, Information Processing in Medical Imaging: 263–274.

    Google Scholar 

  22. Collignon, A., et al. (1996). “Multi-modality medical image registration by maximization of mutual information”, IEEE Transactions on Medical Imaging 16(2): 187–198.

    Google Scholar 

  23. Viola, P. & W. M. Wells Iii (1997). “Alignment by maximization of mutual information”, International Journal of Computer Vision 24(2): 137–154.

    Article  Google Scholar 

  24. Vajda, I. “Theory of Statistical Inference and Information”, Kluwer Academic Publishers.

    Google Scholar 

  25. Bankman, I. N. & S. Morcovescu (2002). “Handbook of medical imaging”, Processing and Analysis. Medical Physics 29: 107.

    Article  Google Scholar 

  26. Sederberg, T. W. & S. R. Parry (1986). “Free-form deformation of solid geometric models”, ACM SIGGRAPH Computer Graphics 20(4): 151–160.

    Article  Google Scholar 

  27. Rueckert, D., et al. (1999). “Non-rigid registration using free-form deformations: application to breast MR images”, IEEE Transactions on Medical Imaging 18(8): 712–721.

    Article  PubMed  CAS  Google Scholar 

  28. Davis, M. H., et al. (1997). “A physics-based coordinate transformation for 3D image matching”, IEEE Transactions on Medical Imaging 16(3): 317–328.

    Article  PubMed  CAS  Google Scholar 

  29. Bajcsy, R. & S. Kovai (1989). “Multiresolution elastic matching”, Computer Vision, Graphics and Image Processing 46(1): 1–21.

    Article  Google Scholar 

  30. Thirion, J. P. (1998). “Image matching as a diffusion process: An analogy with Maxwell’s demons”, Medical Image Analysis 2(3): 243–260.

    Article  PubMed  CAS  Google Scholar 

  31. Christensen, G. E., R. D. Rabbitt & M. I. Miller (1996). “Deformable templates using large deformation kinematics”, IEEE Transactions on Image Processing 5(10): 1435–1447.

    Article  PubMed  CAS  Google Scholar 

  32. Rojas, G., et al. (2007). “Image fusion in neuroradiology: Three clinical examples including MRI of Parkinson disease”, Computerized Medical Imaging and Graphics 31(1): 17–27.

    Article  PubMed  CAS  Google Scholar 

  33. Li, H., B. Manjunath & S. Mitra (1995). “Multisensor image fusion using the wavelet transform”, Graphical Models and Image Processing 57(3): 235–245.

    Article  Google Scholar 

  34. Hardie, R., M. Eismann & G. Wilson (2004). “MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor”, IEEE Transactions on Image Processing 13(9): 1174–1184.

    Article  PubMed  Google Scholar 

  35. Wang, Z. & Y. Ma (2008). “Medical image fusion using m-PCNN”, Information Fusion 9(2): 176–185.

    Article  CAS  Google Scholar 

  36. Tu, T., et al. (2001). “A new look at IHS-like image fusion methods”, Information Fusion 2(3): 177–186.

    Article  Google Scholar 

  37. Ranchin, T., et al. (2003). “Image fusion—the ARSIS concept and some successful implementation schemes”, sISPRS Journal of Photogrammetry and Remote Sensing 58(1–2): 4–18.

    Article  Google Scholar 

  38. Mallat, S. (1999). A Wavelet Tour of Signal Processing. Academic press.

    Google Scholar 

  39. Coifman, R. & D. Donoho (1995). “Translation-invariant de-noising”, Lecture Notes In Statistics 125–125.

    Google Scholar 

  40. Li, H., B. Manjunath & S. Mitra (1994). “Multi-sensor image fusion using the wavelet transform”, ICIP-94, IEEE International Conference 1: 51–55.

    Google Scholar 

  41. Gonzalez-Audicana, M., et al. (2004). “Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition”, IEEE Transactions on Geoscience and Remote Sensing 42(6): 1291–1299.

    Article  Google Scholar 

  42. Zhou, J., D. Civco & J. Silander (1998). “A wavelet transform method to merge Landsat TM and SPOT panchromatic data”, International Journal of Remote Sensing 19(4): 743–758.

    Article  Google Scholar 

  43. Wang, Z. & A. Bovik (2002). “A universal image quality index”, IEEE Signal Processing Letters 9(3): 81–84.

    Article  CAS  Google Scholar 

  44. Boussion, N., et al. (2008). “Contrast enhancement in emission tomography by way of synergistic PET/CT image combination”, Computer Methods and Programs in Biomedicine 90(3): 191–201.

    Article  PubMed  CAS  Google Scholar 

  45. Li, T. & Y. Wang (2009). “Biological image fusion using a SWT based variable-weights selection scheme”, The 3rd International Conference on Bioinformatics and Biomedical Engineering.

    Google Scholar 

  46. Otsu, N. (1975). “A threshold selection method from gray-level histograms”, Automatica 11: 285–296.

    Article  Google Scholar 

  47. Heckbert, P. S. & M. Garland (1997). “Survey of polygonal surface simplification algorithms”, Multiresolution Surface Modeling Course, ACM SIGGRAPH course notes.

    Google Scholar 

  48. Garland, M. (1999). “Quadric-based polygonal surface simplification”, Georgia Institute of Technology.

    Google Scholar 

  49. Levenberg, J. (2002). “Fast view-dependent level-of-detail rendering using cached geometry”, Visualization IEEE 259–265.

    Google Scholar 

  50. Kaufman, A. & K. Mueller (2005). “Overview of volume rendering”, The Visualization Handbook.

    Google Scholar 

  51. Levoy, M. (1988). “Display of surfaces from volume data”, Computer Graphics and Applications. 8(3): 29–37.

    Article  Google Scholar 

  52. Drebin, R. A., L. Carpenter & P. Hanrahan (1988). Volume Rendering. ACM.

    Google Scholar 

  53. Chandrasekhar, S. (1960). Radiative Transfer. Courier Dover Publications.

    Google Scholar 

  54. Blinn, J. F. (1982). “Light reflection functions for simulation of clouds and dusty surfaces”, ACM SIGGRAPH Computer Graphics 16(3): 21–29.

    Article  Google Scholar 

  55. Foley, J. D. (1995). Computer Graphics: Principles and Practice. Addison-Wesley Professional.

    Google Scholar 

  56. Westover, L. (1990). Footprint Evaluation for Volume Rendering. ACM.

    Google Scholar 

  57. Laur, D. & P. Hanrahan (1991). “Hierarchical splatting: a progressive refinement algorithm for volume rendering”, ACM SIGGRAPH Computer Graphics 25(4): 285–288.

    Article  Google Scholar 

  58. Lacroute, P. & M. Levoy (1994). “Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation”, ACM.

    Google Scholar 

  59. Lacroute, P. (1995). “Real-Time Volume Rendering on Shared Memory Multiprocessors Using the Shear-Warp Factorization”, ACM.

    Google Scholar 

  60. Zhang, S. X., P. A. Heng & Z. J. Liu (2004). Atlas of Chinese Visible Human (Male and Female). Science Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tian, J., Wang, Y., Dai, X., Zhang, X. (2013). Medical Image Processing and Analysis. In: Molecular Imaging. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34303-2_11

Download citation

Publish with us

Policies and ethics