Skip to main content

Calcareous Nannofossils from the Ottakoil Formation, Cauvery Basin, South India: Implications on Age and Late Cretaceous Environmental Conditions

  • Chapter
  • First Online:
On a Sustainable Future of the Earth's Natural Resources

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

A more or less complete Upper Cretaceous – Palaeocene age sequence is preserved in the Ariyalur- Pondicherry depression of the Cauvery basin. The Cretaceous-Tertiary boundary (KTB) has been recognized in this basin. Geochemical and isotopic anomalies with sequence stratigraphic framework from this 236 m thick Maastrichtian-Danian section in this basin showed the occurrences of double peaked nature of 87Sr/86Sr, stable isotopic, Barium and other trace elemental anomalies preceding K/T boundary. However, owing to patchy occurrences of fossils, precise dating of these anomalies could yet not be made, thwarting correlation of this section with coeval strata elsewhere. Hence, this composite section was subjected to nannofossil study. Out of 55 samples representing several formations and members in this sequence, only one sample (157B) representing upper part of the Ottakoil Formation yielded Late Maastrichtian age calcareous nannofossils. Though limited in diversity, the assemblage shows exceptional preservation for most of the forms. Most of the studied samples contain abundant organic matter and calcite mineral providing clue on prevalent destruction of nannofossils due to diagenetic transformation/dissolution-precipitation. The calcareous nannofossil taxa recorded are: Ahmuellerella octoradiata, Arkhangelskiella cymbiformis, Braarudosphaera bigelowii, Ceratolithus aculeus, Chiastozygus litterarius, Cyclagelosphaera deflandrei, Cribrosphaerella ehrengergii, Cribrosphaera sp., Eiffelithus gorkae, E. parallelus, E. turriseiffeli, Microrhabdulus undosus, Micula decussata, M. staurophora, M. swastika, Petrobrasiella? Bownii, Prediscosphaera cretacea, P. spinosa, Stradneria crenulata, Staurolithites crux, Zygodiscus minimus, Z. spiralis. Common occurrence of large sized A. cymbiformis (the LAD of which marks the base of CC25a) and the presence of A. octaradiata (the LAD of which indicates top of UC20aTP) permitted placement of the assemblage in CC 25 Arkhangelskiella cymbiformis Zone equivalent to UC 19 nannofossil Zone of Late Maastrichtian age. These observations and zonal placement of the studied rocks have helped to date the geochemical and isotopic anomalies recorded previously which in turn may help correlate the interpretations made with those anomalies with that of comparable stratigraphic sections elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertao GA, Martins PP Jr (1996) A possible tsunami deposit at the Cretaceous–Tertiary boundary in Pemambuco, northeastern Brazil. Sediment Geol 104:189–201

    Article  Google Scholar 

  • Ali QA (1996) Early Cretaceous calcareous nannoplankton from Well Ramnad, Cauvery basin, India, XV Indian Colloquium on Micropalaeontology and Stratigraphy, Dehradun, pp 719–722

    Google Scholar 

  • Alegret L, Thomas E (2004) Benthic foraminifera and environmental turnover across the Cretaceous/Paleogene boundary at Blake Nose (ODP Hole 1049C, Northwestern Atlantic). Palaeogeogr Palaeoclimat Palaeoecol 208:59–83

    Article  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for Cretaceous–Tertiary extinction. Science 208:1095–1108

    Article  Google Scholar 

  • Alvarez W (1986) Toward a theory of impact crises. EOS 67:653–655

    Article  Google Scholar 

  • Arinobu T, Ishiwatari R, Kaiho K, Lamolda MA, Seno H (2005) Abrupt and massive influx of terrestrial biomarkers into the marine environment at the Cretaceous–Tertiary boundary, Caravaca, Spain. Palaeogeogr Palaeoclimatol Palaeoecol 224:1–3

    Article  Google Scholar 

  • Ayyasamy K (1990) Cretaceous heteromorph ammonoid biostratigraphy of southern India. Newsl Stratigr 22:111–118

    Google Scholar 

  • Ayyasamy K (2006) Role of oysters in biostratigraphy: a case study from the Cretaceous of the Ariyalur area, southern India. Geosci J 10:237–247

    Article  Google Scholar 

  • Blanford HF (1862) On the Cretaceous and other rocks of the South Arcot and Trichinopoly districts. Mem Geol Surv Ind 4:217p

    Google Scholar 

  • Burnett JA, Hampton MJ (1998) Upper Cretaceous. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. Cambridge University Press, Cambridge, pp 132–199

    Chapter  Google Scholar 

  • Chandrasekaran VA, Ramkumar M (1995) Stratigraphic classification of Ariyalur group (Upper Cretaceous), Tiruchy district, south India – a review. J Geol Assoc Res Centre Misc Publ 1:1–22

    Google Scholar 

  • Evans NJ, Gregoire DC, Grieve RAF, Goodfellow WD, Veizer J (1993) Use of platinum-group elements for impaetor identification: terrestrial impact craters and Cretaceous–Tertiary boundary. Geochim Cosmochim Acta 57:3737–3748

    Article  Google Scholar 

  • Evans NJ, Ahrens TJ, Gregoire DC (1995) Fractionation of ruthenium from iridium at the Cretaceous–Tertiary boundary. Earth Planet Sci Lett 134:141–153

    Article  Google Scholar 

  • Frank TD, Arthur MA (1999) Tectonic forcings of Maastrichtian ocean-climate evolution. Palaeoceanogr 14:103–117

    Article  Google Scholar 

  • Fürsich FT, Pandey DK (1999) Genesis and environmental significance of Upper Cretaceous shell concentrations from the Cauvery basin, southern India. Palaeogeogr Palaeoclimatol Palaeoecol 145:119–139

    Article  Google Scholar 

  • Govindhan A, Ravindran CN, Rangaraju MKR (1996) Cretaceous stratigraphy and planktonic foraminiferal zonation of Cauvery basin, South India. In: Sahni A (ed) Cretaceous stratigraphy and palaeoenvironments. Mem Geol Soc Ind 37:155–187

    Google Scholar 

  • Hallam A (1981) Facies interpretation and the stratigraphic record. Freeman, San Francisco, p 291

    Google Scholar 

  • Hallam A (1987) End-Cretaceous mass extinction event: argument for terrestrial causation. Science 238:1237–1242

    Article  Google Scholar 

  • Hart MB, Feist SE, Hakansson E, Heinberg C, Price GD, Leng MJ, Watkinson MP (2005) The Cretaceous–Palaeogene boundary succession at Stevns Klint, Denmark: foraminifers and stable isotope stratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 224:6–26

    Article  Google Scholar 

  • Jafar SA (1996) The evolution of marine Cretaceous basins of India: calibration with nannofossil zones. In: Sahni A (ed) Cretaceous stratigraphy and palaeoenvironments. Mem Geol Soc Ind 37:121–134

    Google Scholar 

  • Jafar SA, Rai J (1989) Discovery of Albian nannoflora from type Dalmiapuram Formation, Cauvery basin, India – Palaeooceanographic remarks. Curr Sci 58:358–363

    Google Scholar 

  • Jiang MJ, Gartner S (1986) Calcareous nannofossil succession across the Cretaceous/Tertiary boundary in eastcentral Texas. Micropalaeont 32:232–255

    Article  Google Scholar 

  • Kale AS, Phansalkar VG (1992a) Nannofossil biostratigraphy of the Utatur group, Trichinopoly District, South India. Mem Sci Geol XLIII:89–107

    Google Scholar 

  • Kale AS, Phansalkar VG (1992b) Calcareous nannofossils from the Uttatur Group, Trichinopoly District, Tamil Nadu, India. J Palaeont Soc Ind 37:85–102

    Google Scholar 

  • Kawaragi K, Sekine Y, Kadono T, Sugita S, Ohno S, Ishibashi K, Kurosawa K, Matsui T, Ikeda S (2009) Direct measurements of chemical composition of shock-induced gases from calcite: an intense global warming after the Chicxulub impact due to the indirect greenhouse effect of carbon monoxide. Earth Planet Sci Lett 282:56–64

    Article  Google Scholar 

  • Kay CT (1840) Observations on the fossiliferous beds near Pondicherry and in the District of South Arcot, Madras. J Litt Sci 12:37–42

    Google Scholar 

  • Keller G (1988a) Biotic turnover in benthic foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 66:153–171

    Article  Google Scholar 

  • Keller G (1988b) Extinction, survivorship and evolution of planktonic foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Mar Micropalaeont 13:239–263

    Article  Google Scholar 

  • Keller G, Adatte T, Berner Z, Harting M, Baum G, Prauss M, Tantawy A, Stüben D (2007) Chicxulub impact predates K–T boundary: new evidence from Brazos, Texas, Earth Planet. Sci Lett 255:339–356

    Google Scholar 

  • Keller G, Adatte T, Stinnesbeck W, Luciani V, Karoui-Yakoubi N, Zaghbib-Turki D (2002) Palaeoecology of the Cretaceous–Tertiary mass extinction in planktic foraminifera. Palaeogeogr Palaeoclimatol Palaeoecol 178:257–297

    Article  Google Scholar 

  • Keller G, Li L, MacLeod N (1995) The Cretaceous/Tertiary boundary stratotype section at E1 Kef, Tunisia: how catastrophic was the mass extinction? Palaeogeogr Palaeoclimatol Palaeoecol 119:221–254

    Article  Google Scholar 

  • Keller G, Adatte T, Stinnesbeck W, Stüben D, Kramar U, Berner Z, Li L, Salis Perch-Nielsen KV (1998) The Cretaceous–Tertiary transition on the shallow Saharan platform of southern Tunisia. Geobios 30:951–975

    Article  Google Scholar 

  • Keller G, Stinnesbeck W, Adatte T, Stüben D (2003) Multiple impacts across the Cretaceous–Tertiary boundary. Earth Sci Rev 62:327–363

    Article  Google Scholar 

  • Kring DA (2007) The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol 255:4–21

    Article  Google Scholar 

  • Lamolda MA, Melinte MC, Kaiho K (2005) Nannofloral extinction and survivorship across the K/T boundary at Caravaca, southeastern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 224:27–52

    Article  Google Scholar 

  • Madhavaraju J, Ramasamy S, Ruffell A, Mohan SP (2002) Clay mineralogy of the Late Cretaceous and early Tertiary successions of the Cauvery basin (southeastern India): implications for sediment source and palaeoclimates at the K/T boundary. Cret Res 23:153–163

    Article  Google Scholar 

  • Mitrović-Petrović JM, Ramamoorthy K (1993) Functional morphology of Stigmatophygus elatus (Echinoidea: Cassidoloida) from the lower Maastrichtian of southern India. Geol Balkan Poluos 56:119–135

    Google Scholar 

  • Nair KM (1978) Development of carbonates during Maastrichtian in Cauvery basin. Bull Geol Min Met Soc Ind 47:71–80

    Google Scholar 

  • Newell ND (1967) Revolutions in the history of life. Geol Soc Amer Spec Paper 89:63–91

    Google Scholar 

  • Paul CRC (2005) Interpreting bioevents: what exactly did happen to planktonic foraminifers across the Cretaceous–Tertiary boundary? Palaeogeogr Palaeoclimatol Palaeoecol 224:291–310

    Article  Google Scholar 

  • Perch-Nielsen K (1985) Mesozoic calcareous nannofossils. In: Bolli HM, Saunder JB, Perch-Nielsen K (eds) Plankton stratigraphy, Cambridge earth sciences series. Cambridge University Press, Cambridge, pp 329–426

    Google Scholar 

  • Powell CMcA, Roots SR, Veevers JJ (1988) Pre-break up continental extension in east Gondwanaland and the early opening of the Indian Ocean. Tectonophysics 155:261–283

    Google Scholar 

  • Raju DSN, Misra PK (1996) Cretaceous stratigraphy of India: a review. Mem Geol Soc Ind 37:1–34

    Google Scholar 

  • Raju DSN, Ravindran CN, Kalyansundar R (1993) Cretaceous cycles of sea level changes in Cauvery basin, India – a first revision. ONGC Bull 30:101–113

    Google Scholar 

  • Ramkumar M (1995) Geology, petrology and geochemistry of the Kallankurichchi formation (Lower Maestrichtian), Ariyalur Group, south India. Ph.D. dissertation submitted to the Bharathidasan University, Tiruchirapalli, India. (Unpublished)

    Google Scholar 

  • Ramkumar M (1999) Lithostratigraphy, depositional history and constraints on sequence stratigraphy of the Kallankurichchi Formation (Maestrichtian), Ariyalur group, south India. Geol Balkan Poluos 63:19–42

    Google Scholar 

  • Ramkumar M, Stüben D, Berner Z (2004a) Lithostratigraphy, depositional history and sea level changes of the Cauvery basin, south India. Geol Balkan Poluos 65:1–27

    Google Scholar 

  • Ramkumar M, Stüben D, Berner Z, Schneider J (2004b) Geochemical and isotopic anomalies preceding K/T boundary in the Cauvery basin, south India: implications for the end Cretaceous events. Curr Sci 87:1738–1747

    Google Scholar 

  • Ramkumar M, Harting M, Stüben D (2005) Barium anomaly preceding K/T boundary:plausible causes and implications on end Cretaceous events of K/T sections in Cauvery basin (India), Israel, NE-Mexico and Guatemala. Inter J Earth Sci 94:475–489

    Article  Google Scholar 

  • Ramkumar M, Stüben D, Berner Z (2009) Episodic accumulation of phosphorus during Cretaceous in the Cauvery basin, South India: implications on palaeoclimate, productivity and weathering. Curr Sci 97:262–267

    Google Scholar 

  • Ramkumar M, Stüben D, Berner Z, Schneider J (2010a) 87Sr/86Sr anomalies in Late Cretaceous–Early Tertiary strata of the Cauvery basin, south India: constraints on nature and rate of environmental changes across K–T boundary. J Earth Sys Sci 119:1–17

    Article  Google Scholar 

  • Ramkumar M, Anbarasu K, Sugantha T, Rai J, Sathish G, Suresh R (2010b) Occurrences of KTB exposures and dinosaur nesting site near Sendurai, India: an initial report. Int J Phy Sci 22:573–584

    Google Scholar 

  • Raup DM (1986) Periodic extinction of families and genera. Science 231:833–836

    Article  Google Scholar 

  • Saito T, Yamamoi T, Kaiho K (1986) End-Cretaceous devastation of terrestrial flora in the Boreal Far East. Nature 323:253–255

    Article  Google Scholar 

  • Sastry MVA, Rao BRJ (1964) Cretaceous-Tertiary boundary in south India. In: Proceedings of international geological congress XXII on Cretaceous-Tertiary boundary including volcanic activity, Section.3 Part III. 92–103

    Google Scholar 

  • Sastry MVA, Mamgain VD, Rao BRJ (1972) Ostracod Fauna of the Ariyalur group (Upper Cretaceous), Trichinopoly district, Tamil Nadu. Palaont Ind 40:1–48

    Google Scholar 

  • Schmitz B (1992) Chalcophile elements and Ir in continental Cretaceous–Tertiary boundary clays from the western interior of the USA. Geochim Cosmochim Acta 56:1695–1703

    Article  Google Scholar 

  • Shrivastava JP, Ahmad M (2005) Compositional studies on organic matter from iridium enriched Anjar intertrappean sediments: Deccan volcanism and palaeoenvironmental implications during the Cretaceous/Tertiary boundary. J Iber Geol 31:167–177

    Google Scholar 

  • Sloan RW, Rigby JK Jr, Van Valen LM, Gabriel D (1986) Gradual dinosaur extinction and simultaneous ungulate radiation in the hell creek formation. Science 232:629–633

    Article  Google Scholar 

  • Stolizca F (1861/1873) Cretaceous fauna of south India. Paleont. Ind. Ser. 1–4

    Google Scholar 

  • Stüben D, Kramar U, Harting M, Stinnesbeck W, Keller G (2005) High-resolution geochemical record of Cretaceous–Tertiary boundary sections in Mexico: new constraints on the K/T and Chicxulub events. Geochim Cosmochim Acta 69:2559–2579

    Article  Google Scholar 

  • Sutherland FL (1994) Volcanism around K/T boundary time – its role in an impact scenario for the K/T extinction events. Earth Sci Rev 36:1–26

    Article  Google Scholar 

  • Tewari A, Hart MB, Watkinson MP (1996) A revised lithostratigraphic classification of the Cretaceous rocks of the Trichinopoly district, Cauvery basin, Southeast India. In: Pandey J, Azmi RJ, Bhandari A, Dave A (eds) Contributions to the XV Ind.Colloq. Micropalaeont. Strat. pp 789–800

    Google Scholar 

  • Tschudy RH, Phillmore CL, Ortho CJ, Gilmore JS, Knight JD (1984) Disruption of the terrestrial plant ecosystem at the Cretaceous/Tertairy boundary, Western interior. Science 225:1030–1032

    Article  Google Scholar 

  • Zhao ZK, Xue-Ying M, Zhi-Fang C, Gao-Chuang Y, Kong P, Ebihara M, Zhen-Hua Z (2002) A possible causal relationship between extinction of dinosaurs and K/T iridium enrichment in the Nanxiong Basin, South China: evidence from dinosaur eggshells. Palaeogeogr Palaeoclimatol Palaeoecol 178:1–17

    Article  Google Scholar 

Download references

Acknowledgements

Dr. N.C. Mehrotra, Director, Birbal Sahni Institute of Palaeobotany (BSIP), Lucknow is thanked for permitting the scientific collaboration between Department of Geology, Periyar University, Salem and BSIP, Lucknow. He is also thanked for having provided access to necessary research equipment. Mrs. Abha, Birbal Sahni Research Scholar, BSIP is thanked for various helps to one of us (JR) during preparation of the manuscript. Research work on the KTB environmental and climatic conditions of the Cauvery basin was supported by research grants from the University Grants Commission, New Delhi to MR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsana Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rai, J., Ramkumar, M., Sugantha, T. (2013). Calcareous Nannofossils from the Ottakoil Formation, Cauvery Basin, South India: Implications on Age and Late Cretaceous Environmental Conditions. In: Ramkumar, M. (eds) On a Sustainable Future of the Earth's Natural Resources. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32917-3_5

Download citation

Publish with us

Policies and ethics