Skip to main content

Multiverses, Science, and Ultimate Causation

  • Chapter
  • First Online:
Georges LemaƮtre: Life, Science and Legacy

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 395))

Abstract

This chapter the motivation and evidence for the various types of multiverses that have been proposed. A key problem is their lack of testability, because of the existence of cosmic horizons; nevertheless they are claimed to be a scientific hypothesis. I review the arguments in their favour, and suggest none is conclusive, although there is one case where they could be disproved (the small universe case) and one that would indeed be quite convincing circumstantial evidence (circles in the CMB sky associated with variation of fundamental constants).

Multiverse proponents are in fact proposing weakening the criteria for a scientific theory, which is a dangerous tactic. The scientific status of these proposals is particularly brought in to question by various claims of physically existing infinities, which cannot possibly be verified. Finally I comment that multiverses do not solve issues of ultimate causation, as claimed by their proponents. If one wants to investigate this issue, one must extend the kind of data one considers beyond data obtainable from physics experiments and astronomical observations, to include broader areas of human experience, that are also evidence on the nature of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An example of a paper that apparently only considers hypothetical ensembles is Bjorken (2004). The author talks about ā€œconstructing ensemblesā€. Regrettably, we are unable to do so.

  2. 2.

    For more detail, see the spacetime diagrams by Mark Whittle at http://sol.astro.virginia.edu/class/whittle/astr553/Topic16/t16_light_cones.html.

  3. 3.

    A discussion of testability in this context is given in Ellis (1975).

  4. 4.

    Gellman was quoting from T.H. White, The Once and Future King.

References

  • Aguirre, A., & Johnson, M. C. (2009). A status report on the observability of cosmic bubble collisions. Reports on Progress in Physics, 74, 074901 [arXiv:0908.4105v2].

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Balashov, Y. Y. (1991). Resource letter AP-1 the anthropic principle. American Journal of Physics, 54, 1069.

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  • Barrow, J. D. (2005). General cosmological bounds on spatial variations of physical constants. Physical Review D, 71, 083520.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Barrow, J. D., & Tipler, F. J. (1986). The anthropic cosmological principle. Oxford: Oxford University Press.

    Google ScholarĀ 

  • Bjorken, J. D. (2004). The classification of universes. Astro-ph/0404233. SLAC-PUB-10276.

    Google ScholarĀ 

  • Bondi, H. (1960). Cosmology. Cambridge: Cambridge University Press.

    MATHĀ  Google ScholarĀ 

  • Bostrom, N. (2003). Are you living in a computer simulation? The Philosophical Quarterly, 53, 243ā€“255.

    ArticleĀ  Google ScholarĀ 

  • Carr, B. (Ed.). (2009). Universe or multiverse? Cambridge: Cambridge University Press.

    Google ScholarĀ 

  • Cornish, N. J., Spergel, D. N., & Starkman, G. D. (1998). Circles in the sky: Finding topology with the microwave background radiation. Classical Quantum Gravity, 15, 2657ā€“2670 [arXiv:gr-qc/9602039].

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Davies, P. C. W. (2004). Multiverse cosmological models. Modern Physics Letters A, 19, 727.

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  • Dawkins, R. (2006). The god delusion. Boston: Houghton Mifflin.

    Google ScholarĀ 

  • Deutsch, D. (1997). The fabric of reality: The science of parallel universes. New York: Allen Lane.

    Google ScholarĀ 

  • Ellis, G. F. R. (1975). Cosmology and verifiability. Quarterly Journal of the Royal Astronomical Society, 16, 245.

    ADSĀ  Google ScholarĀ 

  • Ellis, G. F. R. (2006). Issues in the philosophy of cosmology. In J. Butterfield & J. Earman (Eds.), Handbook in philosophy of physics (pp. 1183ā€“1285). Amsterdam: Elsevier [http://arxiv.org/abs/astro-ph/0602280].

  • Ellis, G. F. R. (2011). Why are the laws of nature as they are? What underlies their existence? In D. York, O. Gingerich, & S.-N. Zhang (Eds.), The astronomy revolution: 400 years of exploring the cosmos (pp. 385ā€“404). Boca Raton: Taylor and Francis.

    Google ScholarĀ 

  • Ellis, G. F. R., Kirchner, U., & Stoeger, W. R. (2003). Multiverses and physical cosmology. Monthly Notices of the Royal Astronomical Society, 347, 921.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Ellis, G. F. R., & Schreiber, G. (1986). Observational and dynamic properties of small universes. Physics Letters A, 115, 97.

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  • Ellis, G. F. R., & Stoeger, W. J. (1988). Horizons in inflationary universes. Classical and Quantum Gravity, 207.

    Google ScholarĀ 

  • Feeney, S. M., Johnson, M. C., Mortlock, D. J., & Peiris, H. V. (2011). First observational tests of eternal inflation. Physical Review Letters, 107(7), 071301 [arXiv:1012.1995v3]. Phys. Rev. Lett. 107, 071301 (2011)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Freivogel, B., Kleban, M., Martinez, M. R., & Susskind, L. (2006). Observational consequences of a landscape. Journal of High Energy Physics, 0603, 039 [arXiv:hep-th/0505232].

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Gedalia, O., Jenkins, A., & Perez, G. (2011). Why do we observe a weak force? The hierarchy problem in the multiverse. Physical Review, D83, 115020 [arXiv:1010.2626v3].

    ADSĀ  Google ScholarĀ 

  • Greene, B. (2011). The hidden reality: Parallel universes and the deep laws of the cosmos. New York: Knopff.

    MATHĀ  Google ScholarĀ 

  • Gurzadyan, V.G.,& Penrose R. (2011a). Concentric circles in WMAP data may provide evidence of violent pre-Big-Bang activity. [arXiv:1011.3706].

    Google ScholarĀ 

  • Gurzadyan, V. G., & Penrose R. (2011b). CCC-predicted low-variance circles in CMB sky and LCDM. [arXiv:1104.5675].

    Google ScholarĀ 

  • Guth, A. H. (2001). Eternal Inflation. astro-ph/0101507. Report MIT-CTP-3007.

    Google ScholarĀ 

  • Hartle, J. (2004). Anthropic reasoning and quantum cosmology. New York: American Institute of Physics. gr-qc/0406104.

    Google ScholarĀ 

  • Hilbert, D. (1964). On the infinite. In P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics (p. 134). Englewood Cliff: Prentice Hall.

    Google ScholarĀ 

  • Kachru, S., Kallosh, R., Linde, A., & Trivedi, S. P. (2003). de Sitter Vacua in string theory. Physical Review, D68, 046005 [arXiv:hep-th/0301240v2].

    MathSciNetĀ  ADSĀ  Google ScholarĀ 

  • Katz, G., & Weeks, J. (2004). Polynomial interpretation of multipole vectors. Physical Review D, 70, 063527. astro-ph/0405631. Phys.Rev. D70 (2004) 063527

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Kleban, M. (2011). Cosmic bubble collisions. London: Institute of Physics [arXiv:1107.2593v1].

    Google ScholarĀ 

  • Lachieze-Ray, M., & Luminet, J. P. (1995). Cosmic topology. Physics Reports, 254, 135.

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  • Leslie, J. (1996). Universes. London: Routledge.

    Google ScholarĀ 

  • Lewis, D. K. (2000). On the plurality of worlds. Oxford: Blackwell.

    Google ScholarĀ 

  • Linde, A. D. (1983). Chaotic inflation. Physics Letters, B129, 177.

    MathSciNetĀ  ADSĀ  Google ScholarĀ 

  • Linde, A. D. (1990). Particle physics and inflationary cosmology. Chur: Harwood Academic Publishers.

    Google ScholarĀ 

  • Linde, A. D. (2003). Inflation, quantum cosmology and the anthropic principle. In J. D. Barrow (Ed.), Science and ultimate reality: From quantum to cosmos. Cambridge: Cambridge University Press.

    Google ScholarĀ 

  • Linde, A. D., Linde, D. A., & Mezhlumian, A. (1994). From the big bang theory to the theory of a stationary universe. Physical Review D, 49, 1783.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Linde, A., & Noorbala, M. (2010). Measure problem for eternal and non-eternal inflation. arXiv:1006.2170.

    Google ScholarĀ 

  • Luminet, J. P., Weeks, J. R., Riazuelo, A., Lehoucq, R., & Uzan, J.-P. (2003) ā€œDodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave backgroundā€ Nature. 425:593L.

    Google ScholarĀ 

  • Moss, A., Scott, D., & Zibin, J. P. (2010). No evidence for anomalously low variance circles on the sky. [arXiv:1012.1305v3].

    Google ScholarĀ 

  • Murphy, N., & Ellis, G. F. R. (1996). On the moral nature of the universe: Cosmology, theology, and ethics. Minneapolis: Fortress Press.

    Google ScholarĀ 

  • Nelson, W., & Wilson-Ewing, E. (2011). Pre-Big-Bang cosmology and circles in the cosmic microwave background. [arXiv:1104.3688v2] Phys.Rev.D84:043508,2011.

    Google ScholarĀ 

  • Olive, K. A., Peloso, M., & Uzan, J.-P. (2011). The wall of fundamental constants. Physical Review, D83, 043509 [arXiv:1011.1504v1].

    ADSĀ  Google ScholarĀ 

  • Penrose, R. (2010). Cycles of time: An extraordinary new view of the universe. London: The Bodley Head.

    MATHĀ  Google ScholarĀ 

  • Rees, M. J. (1999). Just six numbers: The deep forces that shape the universe. London: Weidenfeld and Nicholson.

    Google ScholarĀ 

  • Rees, M. J. (2001). Our cosmic habitat. Princeton: Princeton University Press.

    Google ScholarĀ 

  • Rees, M. J. (2003). Numerical coincidences and ā€˜tuningā€™ in cosmology. In C. Wickramasinghe (Ed.), Fred hoyleā€™s universe (p. 95). Dordrecht: Kluwer.

    Google ScholarĀ 

  • Rothman, T., & Ellis, G. F. R. (1992). Smolinā€™s natural selection hypothesis. Quartely Journal rof the Royal Astronomical Society, 34, 201.

    ADSĀ  Google ScholarĀ 

  • Sciama, D. W. (1993). Is the universe unique? In G. Borner & J. Ehlers (Eds.), Die Kosmologie der Gegenwart. MĆ¼nchen: Serie Piper.

    Google ScholarĀ 

  • Shaw, D. J., & Barrow, J. D. (2007). Observable effects of scalar fields and varying constants. General Relativity and Gravitation, 39, 1235ā€“1257.

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Smolin, L. (1997). The life of the cosmos. New York: Oxford University Press.

    MATHĀ  Google ScholarĀ 

  • Starobinsky, A. A. (1986). Current trends in field theory, quantum gravity and strings. In Lecture notes in physics (Vol. 246, p. 107). Heidelberg: Springer.

    Google ScholarĀ 

  • Steinhardt, P. J., & Turok, N. (2002). A cyclic model of the universe. Science, 296, 1436.

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Susskind, L. (2003). The anthropic landscape of string theory. hep-th/0302219.

    Google ScholarĀ 

  • Susskind, L. (2006). The cosmic landscape: String theory and the illusion of intelligent design. New York: Back Bay Books.

    Google ScholarĀ 

  • Tegmark, M. (1998). Is the theory of everything merely the ultimate ensemble theory? Annals of Physics, 270, 1.

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Tegmark, M. (2004). Parallel universes. In J. D. Barrow (Ed.), Science and ultimate reality: From quantum to cosmos. Cambridge: Cambridge University Press [astro-ph/0302131].

    Google ScholarĀ 

  • Tod, P. (2011). Penroseā€™s circles in the CMB and a test of inflation [arXiv:1107.1421v1].

    Google ScholarĀ 

  • Uzan, J-P. (2010). Varying constants, gravitation and cosmology [arXiv:1009.5514v1]. Living Reviews in Relativity

    Google ScholarĀ 

  • Vilenkin, A. (1983). The birth of inflationary universes. Physical Review, D27, 2848.

    MathSciNetĀ  ADSĀ  Google ScholarĀ 

  • Vilenkin, A. (1995). Predictions from quantum cosmology. Physical Review Letters, 74, 846.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Vilenkin, A. (2007). Many worlds in one: The search for other universes. New York: Hill and Wang.

    Google ScholarĀ 

  • Webb, J. K., King, J. A., Murphy, M. T., Flambaum, V. V., Carswell, R. F., & Bainbridge, M. B. (2008). Evidence for spatial variation of the fine structure constant [arXiv:1008.3907v1]. Phys. Rev. Lett., 107, 191101, 2011

    Google ScholarĀ 

  • Weinberg, S. W. (1972). Gravitation and cosmology. New York: Wiley.

    Google ScholarĀ 

  • Weinberg, S. W. (2000a). The cosmological constant problems. astro-ph/0005265. Report UTTG-07-00

    Google ScholarĀ 

  • Weinberg, S. W. (2000b). A priori probability distribution of the cosmological constant. Physical Review D, 61, 103505.

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  • Yamauchi, D., Linde, A., Naruko, A., Sasaki, M., & Tanaka, T. (2011). Open inflation in the landscape. arXiv:1105.2674v2. Phys.Rev.D84:043513,2011

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Ellis .

Editor information

Editors and Affiliations

Appendix

Appendix

I am astounded that serious scientists and philosophers can propose that the universe could be a computer simulation (Bostrom 2003; Greene 2011). It is totally impracticable from a technical viewpoint, and ignores the way the human mind is bodily-embedded and not an algorithmic computer process. It raises far more questions than it answers:

  • Where is this computer?

  • How did it come into being?

  • Why does it not crash every few seconds?

  • How could this be proved to be the caseā€”what evidence is there? How could it be disproved?

Protagonists seem to have confused science fiction with science. Late night pub discussion is not a viable theory.

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ellis, G. (2012). Multiverses, Science, and Ultimate Causation. In: Holder, R., Mitton, S. (eds) Georges LemaƮtre: Life, Science and Legacy. Astrophysics and Space Science Library, vol 395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32254-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32254-9_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32253-2

  • Online ISBN: 978-3-642-32254-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics