Skip to main content
Log in

Observable effects of scalar fields and varying constants

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We show by using the method of matched asymptotic expansions that a sufficient condition can be derived which determines when a local experiment will detect the cosmological variation of a scalar field which is driving the spacetime variation of a supposed constant of Nature. We extend our earlier analyses of this problem by including the possibility that the local region is undergoing collapse inside a virialised structure, like a galaxy or galaxy cluster. We show by direct calculation that the sufficient condition is met to high precision in our own local region and we can therefore legitimately use local observations to place constraints upon the variation of “constants” of Nature on cosmological scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Webb J.K. (1999). Phys. Rev. Lett. 82: 884

    Article  ADS  Google Scholar 

  2. Murphy M.T. (2001). Mon. Not. Roy. Astron. Soc. 327: 1208

    Article  ADS  Google Scholar 

  3. Webb J.K. (2001). Phys. Rev. Lett. 87: 091301

    Article  ADS  Google Scholar 

  4. Murphy M.T., Webb J.K. and Flambaum V.V. (2003). Mon. Not R. astron. Soc. 345: 609

    Article  ADS  Google Scholar 

  5. Chand H. (2004). Astron. Astrophys. 417: 853

    Article  ADS  Google Scholar 

  6. Srianand R. (2004). Phys. Rev. Lett. 92: 121302

    Article  ADS  Google Scholar 

  7. Barrow J.D. (2005). Phil. Trans. Roy. Soc. 363: 2139

    Article  ADS  Google Scholar 

  8. Reinhold E. (2006). Phys. Rev. Lett. 96: 151101

    Article  ADS  Google Scholar 

  9. Barrow J.D. and Magueijo J. (2005). Phys. Rev. D 72: 043521

    Article  ADS  Google Scholar 

  10. Barrow J.D. (2005). Phys. Rev. D 71: 083520

    Article  ADS  Google Scholar 

  11. Uzan J.P. (2003). Rev. Mod. Phys. 75: 403

    Article  ADS  Google Scholar 

  12. Uzan, J.-P.: astro-ph/0409424

  13. Olive, K.A., Qian, Y-Z.: Physics Today, pp. 40–45 (Oct. 2004)

  14. Barrow J.D. (2002). The Constants of Nature: From Alpha to Omega. Vintage, London

    Google Scholar 

  15. Brans C. and Dicke R.H. (1961). Phys. Rev. 124: 925

    Article  MATH  ADS  Google Scholar 

  16. Bekenstein J.D. (1982). Phys. Rev. D 25: 1527

    Article  ADS  Google Scholar 

  17. Sandvik H., Barrow J.D. and Magueijo J. (2002). Phys. Rev. Lett. 88: 031302

    Article  ADS  Google Scholar 

  18. Barrow J.D., Sandvik H.B. and Magueijo J. (2002). Phys. Rev. D 65: 063504

    Article  ADS  Google Scholar 

  19. Barrow J.D., Sandvik H.B. and Magueijo J. (2002). Phys. Rev. D 65: 123501

    Article  ADS  Google Scholar 

  20. Barrow J.D., Magueijo J. and Sandvik H.B. (2002). Phys. Rev. D 66: 043515

    Article  ADS  Google Scholar 

  21. Magueijo J., Barrow J.D. and Sandvik H.B. (2002). Phys. Lett. B 541: 201

    Article  MATH  Google Scholar 

  22. Sandvik H., Barrow J.D. and Magueijo J. (2002). Phys. Lett. B 549: 284

    Article  ADS  Google Scholar 

  23. Barrow J.D., Kimberly D. and Magueijo J. (2004). Class. Quantum Grav. 21: 4289

    Article  MATH  ADS  Google Scholar 

  24. Kimberly D. and Magueijo J. (2004). Phys. Lett. B 584: 8

    Article  ADS  Google Scholar 

  25. Shaw D. and Barrow J.D. (2005). Phys. Rev. D 71: 063525

    Article  ADS  Google Scholar 

  26. Shaw J.D. (2006). Phys. Lett. B 632: 105

    Article  ADS  Google Scholar 

  27. Khoury J. and Weltman A. (2004). Phys. Rev. D 69: 044026

    Article  ADS  Google Scholar 

  28. Brax P., Davis A.-C., Khoury J., Weltman A. and Bruck C. (2004). Phys Rev. D 70: 123518

    Article  ADS  Google Scholar 

  29. Burke W.L. (1971). J. Math. Phys. 12: 401

    Article  Google Scholar 

  30. D’Eath P.D. (1975). Phys. Rev. D. 11: 1387

    Article  ADS  Google Scholar 

  31. D’Eath P.D. (1975). Phys. Rev. D. 12: 2183

    Article  ADS  Google Scholar 

  32. Burke, W.L., Thorne, K.: In: Carmeli, M., Fickler, S., Witten L. (eds.) Relativity. Plenum Press, New York and London, pp. 209–228 (1970)

  33. Shaw D. and Barrow J.D. (2006). Phys. Rev. D 73: 123505–123506

    Article  ADS  Google Scholar 

  34. Shaw D. and Barrow J.D. (2006). Phys. Lett. B 639: 596

    Article  ADS  Google Scholar 

  35. Hinch E.J. (1991). Perturbation Methods. Cambridge UP, Cambridge

    MATH  Google Scholar 

  36. Cole J.D. (1968). Perturbation methods in applied mathematics. Blaisdell, Waltham, Mass

    MATH  Google Scholar 

  37. Krasinski A. (1996). Inhomogeneous Cosmological Models. Cambridge UP, Cambridge

    Google Scholar 

  38. Szekeres P. (1975). Commun. Math. Phys. 41: 55

    Article  MATH  ADS  Google Scholar 

  39. Szafron D.A. (1977). J. Math. Phys. 18: 1673

    Article  MATH  ADS  Google Scholar 

  40. Szafron D.A. and Wainwright J. (1668). J. Math. Phys. 18: 1668

    Article  Google Scholar 

  41. Tolman R.C. (1934). Proc. Nat. Acad. Sci. USA 20: 169

    Article  MATH  ADS  Google Scholar 

  42. Bondi H. (1947). Mon. Not. R. astron. Soc. 107: 410

    MATH  ADS  Google Scholar 

  43. Lemaetre G. (1933). C. R. Acad. Sci. Paris 196: 903–1085

    Google Scholar 

  44. Szekeres P. (1975). Phys. Rev. D 12: 2941

    Article  ADS  Google Scholar 

  45. Gautreau R. (1984). Phys. Rev. D. 29: 198

    Article  ADS  Google Scholar 

  46. Barrow J.D. and Stein-Schabes J. (1984). Phys. Lett. 103: 315

    Google Scholar 

  47. Debnath U., Chakraborty S. and Barrow J.D. (2004). Gen. Rel. Gravitation 36: 231

    Article  MATH  ADS  Google Scholar 

  48. Jacobson T. (1999). Phys. Rev. Lett. 83: 2699

    Article  MATH  ADS  Google Scholar 

  49. Barrow J.D. (1992). Phys. Rev. D 46: R3227

    Article  ADS  Google Scholar 

  50. Barrow J.D. (1992). Gen. Rel. Gravitation 26: 1

    Article  Google Scholar 

  51. Barrow J.D. and Carr B.J. (1996). Phys. Rev. D 54: 3920

    Article  ADS  Google Scholar 

  52. Saida H. and Soda J. (2000). Class. Quantum Gravity 17: 4967

    Article  MATH  ADS  Google Scholar 

  53. Barrow J.D. and Sakai N. (2001). Class. Quantum Gravity 18: 4717

    Article  MATH  ADS  Google Scholar 

  54. Harada T., Goymer C. and Carr B.J. (2002). Phys. Rev. D. 66: 104023

    Article  ADS  Google Scholar 

  55. Peebles P.J.E. (1970). Astron. J. 75: 13

    Article  ADS  Google Scholar 

  56. Padmanabhan T. (2002). Theoretical Astrophysics, vol. III: Galaxies and Cosmology. Cambridge University Press, Cambridge

    Google Scholar 

  57. Mota D. and Barrow J.D. (2004). Mon. Not. Roy. Astron. Soc. 349: 281

    Article  ADS  Google Scholar 

  58. Barrow J.D. and Mota D. (2004). Phys. Lett. B 581: 141

    Article  ADS  Google Scholar 

  59. Clifton T., Mota D. and Barrow J.D. (2005). Mon. Not. R. Astron. Soc. 358: 601

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Barrow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrow, J.D., Shaw, D.J. Observable effects of scalar fields and varying constants. Gen Relativ Gravit 39, 1235–1257 (2007). https://doi.org/10.1007/s10714-007-0453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0453-z

Keywords

Navigation