Skip to main content

An Efficient Sparse Grid Galerkin Approach for the Numerical Valuation of Basket Options Under Kou’s Jump-Diffusion Model

  • Conference paper
  • First Online:
Sparse Grids and Applications

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 88))

Abstract

We use a sparse grid approach to discretize a multi-dimensional partial integro-differential equation (PIDE) for the deterministic valuation of European put options on Kou’s jump-diffusion processes. We employ a generalized generating system to discretize the respective PIDE by the Galerkin approach and iteratively solve the resulting linear system. Here, we exploit a newly developed recurrence formula, which, together with an implementation of the unidirectional principle for non-local operators, allows us to evaluate the operator application in linear time. Furthermore, we exploit that the condition of the linear system is bounded independently of the number of unknowns. This is due to the use of the Galerkin generating system and the computation of L 2-orthogonal complements. Altogether, we thus obtain a method that is only linear in the number of unknowns of the respective generalized sparse grid discretization. We report on numerical experiments for option pricing with the Kou model in one, two and three dimensions, which demonstrate the optimal complexity of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More sophisticated techniques, e.g. space-time sparse grids [17], are available, but this is beyond the scope of this work.

  2. 2.

    This holds for a range of parameters 0 ≤ s < t ≤ r with r being the order of the spline of the space construction. In our case of linear splines r = 2 holds.

  3. 3.

    For s = 0 an additional logarithmic term appears in the error estimate.

  4. 4.

    The discretization in this example includes boundary functions otherwise not used for computation.

  5. 5.

    Note that the numbers \((1),\ldots , (d)\) in the exponents are no powers but indices, indicating that different operations may be carried out in different dimensions.

  6. 6.

    For notational convenience we drop the dimension index (j) in \({\mathbf{A}}_{{l}_{j},{l}_{j} \prime }^{(j)}\) in the following calculations.

  7. 7.

    Here and in the following, we have omitted time related indices and the dependence on other dimensions.

  8. 8.

    In one dimension, full and sparse grids are of course the same.

References

  1. L. Andersen and J. Andreasen. Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Review of Derivatives Research, 4(3):231–262, 2000.

    Article  Google Scholar 

  2. R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, 1961.

    Google Scholar 

  3. H. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:1–123, 2004.

    Article  MathSciNet  Google Scholar 

  4. H. Bungartz, A. Heinecke, D. Pflüger, and S. Schraufstetter. Option pricing with a direct adaptive sparse grid approach. Journal of Computational and Applied Mathematics, 2011.

    Google Scholar 

  5. G. Beylkin and M. Mohlenkamp. Numerical operator calculus in higher dimensions. Proc. Natl. Acad. Sci. USA, 99:10246–10251, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Black and M. Scholes. The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3):637–654, 1973.

    Article  Google Scholar 

  7. H. Bungartz. Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. Dissertation, Fakultät für Informatik, Technische Universität München, November 1992.

    Google Scholar 

  8. R. Balder and C. Zenger. The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci. Comput., 17:631–646, May 1996.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series, 2004.

    Google Scholar 

  10. R. Cont and E. Voltchkova. A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal., 43:1596–1626, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Feuersänger. Sparse Grid Methods for Higher Dimensional Approximation. Dissertation, Institut für Numerische Simulation, Universität Bonn, September 2010.

    Google Scholar 

  12. T. Gerstner and M. Griebel. Dimension–adaptive tensor–product quadrature. Computing, 71(1):65–87, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Griebel and H. Harbrecht. On the construction of sparse tensor product spaces. Mathematics of Computations, 2012. to appear. Also available as INS Preprint No. 1104, University of Bonn.

    Google Scholar 

  14. M. Griebel and S. Knapek. Optimized general sparse grid approximation spaces for operator equations. Mathematics of Computations, 78(268):2223–2257, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Griebel and P. Oswald. On additive Schwarz preconditioners for sparse grid discretizations. Numer. Math., 66:449–464, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Griebel and P. Oswald. Tensor product type subspace splitting and multilevel iterative methods for anisotropic problems. Adv. Comput. Math., 4:171–206, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Griebel and D. Oeltz. A sparse grid space-time discretization scheme for parabolic problems. Computing, 81(1):1–34, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Griebel. Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Teubner Skripten zur Numerik. Teubner, Stuttgart, 1994.

    Book  MATH  Google Scholar 

  19. E. Kaasschieter. Preconditioned conjugate gradients for solving singular systems. Journal of Computational and Applied Mathematics, 24(1–2):265–275, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Kou. A jump-diffusion model for option pricing. Management Science, 48(8):1086–1101, 2002.

    Article  MATH  Google Scholar 

  21. S. Kou. Jump-diffusion models for asset pricing in financial engineering. In John R. Birge and Vadim Linetsky, editors, Financial Engineering, volume 15 of Handbooks in Operations Research and Management Science, pages 73–116. Elsevier, 2007.

    Google Scholar 

  22. R. Merton. Theory of rational option pricing. Bell Journal of Economics, 4(1):141–183, 1973.

    Article  MathSciNet  Google Scholar 

  23. R. Merton. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3:125–144, 1976.

    Article  MATH  Google Scholar 

  24. C. Schwab N. Hilber, S. Kehtari and C. Winter. Wavelet finite element method for option pricing in highdimensional diffusion market models. Research Report 2010-01, Seminar for Applied Mathematics, Swiss Federal Institute of Technology Zurich, 2010.

    Google Scholar 

  25. D. Oeltz. Ein Raum-Zeit Dünngitterverfahren zur Diskretisierung parabolischer Differentialgleichungen. Dissertation, Institut für Numerische Simulation, Universität Bonn, 2006.

    Google Scholar 

  26. C. Reisinger. Numerische Methoden für hochdimensionale parabolische Gleichungen am Beispiel von Optionspreisaufgaben. Dissertation, Ruprecht-Karls-Universität Heidelberg, 2004.

    MATH  Google Scholar 

  27. N. Reich, C. Schwab, and C. Winter. On Kolmogorov equations for anisotropic multivariate Lévy processes. Finance and Stochastics, 14(4):527–567, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Thomée. Galerkin finite element methods for parabolic problems. Springer series in computational mathematics. Springer, 1997.

    MATH  Google Scholar 

  29. J. Toivanen. Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM J. Sci. Comput., 30(4):1949–1970, 2008.

    Article  MathSciNet  Google Scholar 

  30. A. Zeiser. Fast matrix-vector multiplication in the sparse-grid Galerkin method. J. Sci. Comput., 47(3):328–346, 2011.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Hullmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Griebel, M., Hullmann, A. (2012). An Efficient Sparse Grid Galerkin Approach for the Numerical Valuation of Basket Options Under Kou’s Jump-Diffusion Model. In: Garcke, J., Griebel, M. (eds) Sparse Grids and Applications. Lecture Notes in Computational Science and Engineering, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31703-3_6

Download citation

Publish with us

Policies and ethics