Skip to main content
Log in

DG Method for Pricing European Options under Merton Jump-Diffusion Model

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

Under real market conditions, there exist many cases when it is inevitable to adopt numerical approximations of option prices due to non-existence of analytical formulae. Obviously, any numerical technique should be tested for the cases when the analytical solution is well known. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Merton jump-diffusion model, when the evolution of the asset prices is driven by a Lévy process with finite activity. The valuation of options under such a model with lognormally distributed jumps requires solving a parabolic partial integro-differential equation which involves both the integrals and the derivatives of the unknown pricing function. The integral term related to jumps leads to new theoretical and numerical issues regarding the solving of the pricing equation in comparison with the standard approach for the Black-Scholes equation. Here we adopt the idea of the relatively modern technique that the integral terms in Merton-type models can be viewed as solutions of proper differential equations, which can be accurately solved in a simple way. For practical purposes of numerical pricing of options in such models we propose a two-stage implicit-explicit scheme arising from the discontinuous piecewise polynomial approximation, i.e., the discontinuous Galerkin method. This solution procedure is accompanied with theoretical results and discussed within the numerical results on reference benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Achdou, O. Pironneau: Computational Methods for Option Pricing. Frontiers in Applied Mathematics 30, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2005.

    Book  Google Scholar 

  2. A. Almendral, C. W. Oosterlee: Numerical valuation of options with jumps in the underlying. Appl. Numer. Math. 53 (2005), 1–18.

    Article  MathSciNet  Google Scholar 

  3. L. Andersen, J. Andreasen: Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4 (2000), 231–262.

    Article  Google Scholar 

  4. A. Bensoussan, J.-L. Lions: Impulse Control and Quasi-Variational Inequalities. Gauthier-Villars, Paris, 1984.

    MATH  Google Scholar 

  5. F. Black, M. Scholes: The pricing of options and corporate liabilities. J. Polit. Econ. 81 (1973), 637–654.

    Article  MathSciNet  Google Scholar 

  6. P. Boyle, M. Broadie, P. Glasserman: Monte Carlo methods for security pricing. J. Econ. Dyn. Control 21 (1997), 1267–1321.

    Article  MathSciNet  Google Scholar 

  7. P. Carr, A. Mayo: On the numerical evaluation of option prices in jump diffusion processes. Eur. J. Finance 13 (2007), 353–372.

    Article  Google Scholar 

  8. R. Cont, P. Tankov: Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series, Chapman and Hall/CRC, Boca Raton, 2004.

    MATH  Google Scholar 

  9. R. Cont, E. Voltchkova: A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal. 43 (2005), 1596–1626.

    Article  MathSciNet  Google Scholar 

  10. J. C. Cox, S. A. Ross, M. Rubinstein: Option pricing: a simplified approach. J. Financ. Econ. 7 (1979), 229–263.

    Article  MathSciNet  Google Scholar 

  11. Y. d’Halluin, P. A. Forsyth, K. R. Vetzal: Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25 (2005), 87–112.

    Article  MathSciNet  Google Scholar 

  12. V. Dolejší, M. Feistauer: Discontinuous Galerkin Method. Analysis and Applications to Compressible Flow. Springer Series in Computational Mathematics 48, Springer, Cham, 2015.

    MATH  Google Scholar 

  13. V. Dolejší, M. Vlasák: Analysis of a BDF-DGFE scheme for nonlinear convection-diffusion problems. Numer. Math. 110 (2008), 405–447.

    Article  MathSciNet  Google Scholar 

  14. M. Feistauer, K. Švadlenka: Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems. J. Numer. Math. 12 (2004), 97–117.

    Article  MathSciNet  Google Scholar 

  15. L. Feng, V. Linetsky: Pricing options in jump-diffusion models: an extrapolation approach. Oper. Res. 56 (2008), 304–325.

    Article  MathSciNet  Google Scholar 

  16. E. G. Haug: The Complete Guide to Option Pricing Formulas. McGraw-Hill, New York, 2006.

    Google Scholar 

  17. F. Hecht: New development in freefem++. J. Numer. Math. 20 (2012), 251–265.

    Article  MathSciNet  Google Scholar 

  18. J. Hozman: Analysis of the discontinuous Galerkin method applied to the European option pricing problem. AIP Conf. Proc. 1570 (2013), 227–234.

    Article  Google Scholar 

  19. J. Hozman, T. Tichý: On the impact of various formulations of the boundary condition within numerical option valuation by DG method. Filomat 30 (2016), 4253–4263.

    Article  MathSciNet  Google Scholar 

  20. J. Hozman, T. Tichý: DG method for numerical pricing of multi-asset Asian options—the case of options with floating strike. Appl. Math., Praha 62 (2017), 171–195.

    Article  MathSciNet  Google Scholar 

  21. J. Hozman, T. Tichý: DG method for the numerical pricing of two-asset European-style Asian options with fixed strike. Appl. Math., Praha 62 (2017), 607–632.

    Article  MathSciNet  Google Scholar 

  22. J. Hozman, T. Tichý: DG framework for pricing European options under one-factor stochastic volatility models. J. Comput. Appl. Math. 344 (2018), 585–600.

    Article  MathSciNet  Google Scholar 

  23. A. Itkin: Pricing Derivatives Under Lévy Models. Modern Finite-Difference and Pseudo-Differential Operators Approach. Pseudo-Differential Operators. Theory and Applications 12, Birkhäuser/Springer, Basel, 2017.

    MATH  Google Scholar 

  24. S. G. Kou: A jump-diffusion model for option pricing. Manage. Sci. 48 (2002), 1086–1101.

    Article  Google Scholar 

  25. A. Kufner, O. John, S. Fučík: Function Spaces. Monographs and Textsbooks on Mechanics of Solids and Fluids. Mechanics: Analysis. Noordhoff International Publishing, Leyden; Academia, Praha, 1977.

    Google Scholar 

  26. Y. Kwon, Y. Lee: A second-order finite difference method for option pricing under jump-diffusion models. SIAM J. Numer. Anal. 49 (2011), 2598–2617.

    Article  MathSciNet  Google Scholar 

  27. M. D. Marcozzi: An adaptive extrapolation discontinuous Galerkin method for the valuation of Asian options. J. Comput. Appl. Math. 235 (2011), 3632–3645.

    Article  MathSciNet  Google Scholar 

  28. A.-M. Matache, T. von Petersdorff, C. Schwab: Fast deterministic pricing of options on Lévy driven assets. M2AN, Math. Model. Numer. Anal. 38 (2004), 37–71.

    Article  MathSciNet  Google Scholar 

  29. R. C. Merton: Theory of rational option pricing. Bell J. Econ. Manage. Sci. 4 (1973), 141–183.

    Article  MathSciNet  Google Scholar 

  30. R. C. Merton: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3 (1976), 125–144.

    Article  Google Scholar 

  31. D. P. Nicholls, A. Sward: A discontinuous Galerkin method for pricing American options under the constant elasticity of variance model. Commun. Comput. Phys. 17 (2015), 761–778.

    Article  MathSciNet  Google Scholar 

  32. W. H. Reed, T. R. Hill: Triangular Mesh Methods for the Neutron Transport Equation. Technical Report LA-UR-73–479, Los Alamos Scientific Laboratory, New Mexico, 1973; Available at https://www.osti.gov/servlets/pur1/4491151 .

    Google Scholar 

  33. B. Rivière: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation. Frontiers in Applied Mathematics 35, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2008.

    MATH  Google Scholar 

  34. H.-G. Roos, M. Stynes, L. Tobiska: Numerical Methods for Singularly Perturbed Differential Equations. Convection-diffusion and Flow Problems. Springer Series in Computational Mathematics 24, Springer, Berlin, 1996.

    MATH  Google Scholar 

  35. M. Vlasák: Time discretizations for evolution problems. Appl. Math., Praha 62 (2017), 135–169.

    Article  MathSciNet  Google Scholar 

  36. M. Vlasák, V. Dolejší, J. Hájek: A priori error estimates of an extrapolated space-time discontinuous Galerkin method for nonlinear convection-diffusion problems. Numer. Methods Partial Differ. Equations 27 (2011), 1456–1482.

    Article  MathSciNet  Google Scholar 

  37. P. Wilmott, J. Dewynne, S. Howison: Option Pricing: Mathematical Models and Computation. Financial Press, Oxford, 1995.

    MATH  Google Scholar 

  38. K. Zhang, S. Wang: A computational scheme for options under jump diffusion processes. Int. J. Numer. Anal. Model. 6 (2009), 110–123.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiří Hozman, Tomáš Tichý or Miloslav Vlasák.

Additional information

The first two authors were supported through the Czech Science Foundation (GA ČR) under project 16-09541S. Furthermore, the second author also acknowledges the support provided within SP2019/5, an SGS research project of VŠB-TU Ostrava. The research of the third author was supported by grant 17-01747S of the Czech Science Foundation; he is a junior member of the university center for mathematical modeling, applied analysis and computational mathematics (MathMAC). The support is greatly acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hozman, J., Tichý, T. & Vlasák, M. DG Method for Pricing European Options under Merton Jump-Diffusion Model. Appl Math 64, 501–530 (2019). https://doi.org/10.21136/AM.2019.0305-18

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2019.0305-18

Keywords

MSC 2010

Navigation