Skip to main content

Principles and Roots of Neutron Capture Therapy

  • Chapter
  • First Online:
Neutron Capture Therapy

Abstract

Boron neutron capture therapy is a binary form of radiation therapy using the high propensity of the nonradioactive nuclide boron-10 to capture thermal neutrons resulting in the prompt nuclear reaction 10B(n,α)7Li. The products of this reaction have high linear energy transfer characteristics (α particle approximately 150 keVμm−1, 7Li-nucleus approximately 175 keVμm−1). The path lengths of these particles in water or tissues are in the range of 4.5–10 μm: hence resulting an energy deposition limited to the diameter of a single cell. Theoretically, therefore, it is possible to selectively irradiate those tumor cells that have taken up a sufficient amount of 10B and simultaneously spare normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chadwick J (1932) The existence of a neutron. Proc R Soc London A 136:692–708

    Article  CAS  Google Scholar 

  2. Taylor HJ, Goldhaber M (1935) Detection of nuclear disintegration in a photographic emulsion. Nature (London) 135:341–348

    Article  CAS  Google Scholar 

  3. Locher GL (1936) Biological effects and therapeutic possibilities of neutrons. Am J Roentgenol Radium Ther 36(1):1–13

    CAS  Google Scholar 

  4. Garber DJ, Kinsey RR (1976) Neutron cross sections, 3rd edn. Brookhaven National Laboratory, New York

    Google Scholar 

  5. Mughabghab SF (1984) Neutron cross sections. Academic, Orlando

    Google Scholar 

  6. Kohlrausch F (1986) Praktische physik. B. G. Teubner, Stuttgart

    Google Scholar 

  7. Sears VF (1992) Neutron scattering lengths and cross sections. Neutron News 3(3):22–37

    Article  Google Scholar 

  8. Brugger RM, Shih JA (1989) Evaluation of gadolinium-157 as a neutron capture therapy agent. Strahlenther Onkol 165(2–3):153–156

    PubMed  CAS  Google Scholar 

  9. Akine Y, Tokita N, Matsumoto T, Oyama H, Egawa S, Aizawa O (1990) Radiation effect of gadolinium-neutron capture reactions on the survival of Chinese hamster cells. Strahlenther Onkol 166(12):831–833

    PubMed  CAS  Google Scholar 

  10. Matsumoto T (1992) Transport calculations of depth-dose distributions for gadolinium neutron capture therapy. Phys Med Biol 37(1):155–162

    Article  PubMed  CAS  Google Scholar 

  11. Shih JA, Brugger RM (1992) Gadolinium as a neutron capture therapy agent. In: Allen BJ, Moore DE, Harrington BV (eds) Progress in neutron capture therapy for cancer. Plenum Press, New York/London, pp 183–186

    Chapter  Google Scholar 

  12. Khokhlov VF, Yashkin PN, Silin DI, Djorova ES, Lawaczeck R (1995) Neutron capture therapy with gadopentetate dimeglumine: experiments on tumor-bearing rats. Acad Radiol 2(5):392–398

    Article  PubMed  CAS  Google Scholar 

  13. Hofmann B, Fischer C-O, Lawaczeck R, Platzek J, Semmler W (1999) Gadolinium neutron capture therapy (GdNCT) of melanoma cells and solid tumors with the magnetic resonance imaging contrast agent gadobutrol. Invest Radiol 34(2):126–133

    Article  PubMed  CAS  Google Scholar 

  14. Tokuuye K, Tokita N, Akine Y, Nakayama H, Sakurai Y, Kobayashi T, Kanda K (2000) Comparison of radiation effects of gadolinium and boron neutron capture reactions. Strahlenther Onkol 176(2):81–83

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi K, Nakamura H, Furumoto S, Yamamoto K, Fukuda H, Matsumura A, Yamamoto Y (2005) Synthesis and in vivo biodistribution of BPA-Gd-DTPA complex as a potential MRI contrast carrier for neutron capture therapy. Bioorg Med Chem 13(3):735–743

    Article  PubMed  CAS  Google Scholar 

  16. Salt C, De Stasio G, Schürch S, Casalbore P, Mercanti D, Weinreich R, Kaden TA (2002) Novel DNA-seeking contrast agents for gadolinium neutron capture therapy. In: Sauerwein W, Moss R, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, Bologna, pp 803–806

    Google Scholar 

  17. Stalpers L, Stecher-Rasmussen F, Kok T, Boes J, van Vliet-Vroegindeweij C, Slotman B, Haveman J (2002) Radiobiology of gadolinium neutron capture therapy. In: Sauerwein W, Moss R, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, Bologna, pp 825–830

    Google Scholar 

  18. Cerullo N, Bufalino D et al (2009) Progress in the use of gadolinium for NCT. Appl Radiat Isot 67(7–8 Suppl):S157–S160

    Article  PubMed  CAS  Google Scholar 

  19. Martin RF, D’Cunha G, Pardee M, Allen BJ (1988) Induction of double-strand breaks following neutron capture by DNA-bound Gd-157. Int J Radiat Biol 54(2):205–208

    Article  PubMed  CAS  Google Scholar 

  20. Martin RF, D’Cunha G, Pardee M, Allen BJ (1989) Induction of DNA double-strand breaks by 157-Gd neutron capture. Pigment Cell Res 2(4):330–332

    Article  PubMed  CAS  Google Scholar 

  21. Luessenhop AJ, Sweet WH, Robinson J (1956) Possible use of the neutron capturing isotope Lithium-6 in the radiation therapy of brain tumors. Am J Roentgenol 76:376–392

    CAS  Google Scholar 

  22. Sauerwein W, Heselmann I, Pöller F, Rassow J, Szypniewski H, Streffer C, Sack H (1992) Neutron capture reactions in a d(14)  +  Be fast neutron beam. In: Allen BJ, Moore DE, Harrington BV (eds) Progress in neutron capture therapy for cancer. Plenum Press, New York, London, pp 199–202

    Chapter  Google Scholar 

  23. Sauerwein W (1993) Neutroneneinfangreaktionen zur Optimierung der Strahlentherapie mit schnellen Neutronen. Habiliationsschrift. Medizinische Fakultät der Universität GHS, Essen

    Google Scholar 

  24. Tobias CA, Weymouth PP, Wasserman LR, Stapleton GE (1948) Some biological effects due to nuclear fission. Science 107:115–118

    Article  PubMed  CAS  Google Scholar 

  25. Passalacqua F (1958) Untersuchungen über das Verhalten schwerer Elemente bei Tieren mit experimentellen Tumoren. Zur Speicherung von U-235-Nitrat in Ehrlich-Tumoren. Fortschr Röntgenstr 89(3):361–365

    Article  CAS  Google Scholar 

  26. Liu HB, Brugger RM, Shih JL (1992) Neutron capture therapy with 235U seeds. Med Phys 19(3):705–708

    Article  PubMed  CAS  Google Scholar 

  27. Kruger PG (1940) Some biological effects of nuclear disintegration products on neoplastic tissue. Proc Natl Acad Sci USA 26:181–192

    Article  PubMed  CAS  Google Scholar 

  28. Zahl PA, Cooper FS, Dunning JR (1940) Some in vivo effects of localized nuclear disintegration products on transplantable mouse sarcoma. Proc Natl Acad Sci USA 26(10):589–598

    Article  PubMed  CAS  Google Scholar 

  29. Zahl PA, Cooper FS (1941) Physical and biological considerations in the use of slow neutrons for cancer therapy. Radiology 37:673–682

    CAS  Google Scholar 

  30. Sweet WH (1951) The uses of nuclear disintegration in the diagnosis and treatment of brain tumor. N Engl J Med 245(23):875–878

    Article  PubMed  CAS  Google Scholar 

  31. Sweet WH, Javid M (1951) The possible use of slow neutrons plus boron-10 in the therapy of intracranial tumors. Trans Am Neurol Assoc 76:60–63

    Google Scholar 

  32. Conn HL, Antal BB, Farr LE (1955) The effect of large intravenous doses of sodium borate on the human myocardium as reflected in the electrocardiogram. Circulation 12:1043–1046

    Article  PubMed  CAS  Google Scholar 

  33. Locksley HB, Farr LE (1955) The tolerance of large doses of sodium borate intravenously by patients receiving neutron capture therapy. J Pharmacol Exp Ther 114:484–489

    PubMed  CAS  Google Scholar 

  34. Archambeau JO (1970) The effect of increasing exposures of the 10B(n,α)7Li reaction on the skin of man. Radiology 94:178–187

    Google Scholar 

  35. Slatkin DN (1991) A history of boron neutron capture therapy of brain tumours. Brain 114:1609–1629

    Article  PubMed  Google Scholar 

  36. Slatkin DN, McChesny DD, Wallace DW (1986) A retrospective study of 457 neurosurgical patients with cerebral malignant glioma at the Massachusetts General Hospital 1952–1981: implications for sequential trials of postoperative therapy. In: Second international symposium on neutron capture therapy, Nishimura, Tokyo, pp 434–446

    Google Scholar 

  37. Sauerwein W (1993) Principles and history of neutron capture therapy. Strahlenther Onkol 169(1):1–6

    PubMed  CAS  Google Scholar 

  38. Sweet WH, Soloway AH, Brownell GL (1963) Boron-slow neutron capture therapy of gliomas. Acta Radiol (Stockholm) 1:114–121

    Google Scholar 

  39. Asbury AK, Ojeman RG, Nielsen SL, Sweet WH (1972) Neuropathological study of fourteen cases of malignant brain tumor treated by boron-10 slow neutron capture radiation. J Neuropathol Exp Neurol 31(2):278–303

    Article  PubMed  CAS  Google Scholar 

  40. Farr LE, Calvo WG, Haymaker WE, Lippincott SW, Yamamoto YL, Stickley EE (1961) Effect of thermal neutrons on the central nervous system (apparent tolerance of central nervous system structures in man). Arch Neurol 4:246–257

    Article  PubMed  CAS  Google Scholar 

  41. Coderre JA, Glass JD, Micca P, Fairchild RG (1989) Neutron capture therapy for melanoma. Basic Life Sci 50(219):219–232

    PubMed  CAS  Google Scholar 

  42. Goodman JH, Fairchild RG (1990) Boron neutron capture therapy for cerebral neoplasia. Perspect Neurol Surg 1(1):93–110

    Google Scholar 

  43. Farr LE (1991) Neutron capture therapy: years of experimentation – years of reflection. Report BNL-47087. Brookhaven National Laboratory, New York

    Google Scholar 

  44. Soloway AH, Hatanaka H, Davis MA (1967) Penetration of brain and brain tumor. VII. Tumor binding sulfhydryl boron compounds. J Med Chem 10:714–717

    Article  PubMed  CAS  Google Scholar 

  45. Hatanaka T (1969) Future possibility of neutron capture therapy of malignant tumors by use of low energy neutron from nuclear reactors and other sources. Gan No Rinsho 15(4):367–369

    PubMed  CAS  Google Scholar 

  46. Hatanaka H, Sano K (1972) A revised boron-neutron capture therapy for malignant brain tumors. In: Fusek I, Kunc Z (eds) Present limits in neurosurgery. Czechoslovak Medical Press, Prague, pp 83–85

    Google Scholar 

  47. Hatanaka H (1986) Boron-neutron capture therapy for tumors. Preface. In: Boron-neutron capture therapy for tumors. Nishimura Co. Ltd, Niigata

    Google Scholar 

  48. Hatanaka H (1990) Clinical results of boron neutron capture therapy. Basic Life Sci 54(15):15–21

    PubMed  CAS  Google Scholar 

  49. Hatanaka H, Sweet WH, Sano K, Ellis F (1991) The present status of boron-neutron capture therapy for tumors. Pure Appl Chem 63(3):373–374

    Article  Google Scholar 

  50. Takeuchi A, Kadosawa T, Hatanaka H (1988) Application of deuterium water to boron-neutron capture therapy of cerebral gliomas. In: 3rd international symposium on neutron capture therapy, Bremen, 1988, Abstract-book

    Google Scholar 

  51. Nakagawa Y, Hatanaka H, Moritani M, Kitamura K, Matsumoto K, Kobayashi M (1994) Partial deuteration and blood–brain barrier (BBB) permeability. Acta Neurochir Suppl Wien 60(410):410–412

    PubMed  CAS  Google Scholar 

  52. Nakagawa Y, Pooh K, Kageji T, Kitamura K, Komatsu H, Tsuji F, Hatanaka H, Minobe T (1996) Boron neutron capture therapy for malignant brain tumors in children. Cancer neutron capture therapy. Mishima/Plenum Press, New York/London, pp 725–731

    Google Scholar 

  53. Mishima Y, Ichihashi M, Hatta S, Honda C, Sasase A, Yamamura K, Kanda K, Kobayashi T, Fukuda H (1989) Selective thermal neutron capture therapy and diagnosis of malignant melanoma: from basic studies to first clinical treatment. Basic Life Sci 50(251):251–260

    PubMed  CAS  Google Scholar 

  54. Mishima Y, Honda C, Ichihashi M, Obara H, Hiratsuka J, Fukuda H, Karashima H, Kobayashi T, Kanda K, Yoshino K (1989) Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound [letter]. Lancet 2(8659):388–389

    Article  PubMed  CAS  Google Scholar 

  55. Mishima Y, Ichihashi M, Hatta S, Honda C, Yamamura K, Nakagawa T, Obara H, Shirakawa J, Hiratsuka J, Taniyama K, Tanaka C, Kanda K et al (1989) First human clinical trial of melanoma neutron capture. Diagnosis and therapy. Strahlenther Onkol 165(2–3):251–254

    PubMed  CAS  Google Scholar 

  56. Chanana AD, Capala J, Chadha M, Coderre JA, Diaz AZ, Elowitz EH, Iwai J, Joel DD, Liu HB, Ma R, Pendzick N, Peress NS, Shady MS, Slatkin DN, Tyson GW, Wielopolski L (1999) Boron neutron capture therapy for glioblastoma multiforme: interim results from the phase I/II dose-escalation studies. Neurosurgery 44(6):1182–1193

    PubMed  Google Scholar 

  57. Busse PM, Harling OK, Palmer MR, Kiger WS 3rd, Kaplan J, Kaplan I, Chuang CF, Goorley JT, Riley KJ, Newton TH, Santa Cruz GA, Lu XQ, Zamenhof RG (2003) A critical examination of the results from the Harvard-MIT NCT program phase I clinical trial of neutron capture therapy for intracranial disease. J Neurooncol 62(1–2):111–121

    PubMed  Google Scholar 

  58. Sauerwein W, Zurlo A (2002) The EORTC boron neutron capture therapy (BNCT) group: achievements and future projects. Eur J Cancer 38(Suppl 4):S31–S34

    Article  PubMed  Google Scholar 

  59. Joensuu H, Kankaanranta L, Seppala T, Auterinen I, Kallio M, Kulvik M, Laakso J, Vahatalo J, Kortesniemi M, Kotiluoto P, Seren T, Karila J, Brander A, Jarviluoma E, Ryynanen P, Paetau A, Ruokonen I, Minn H, Tenhunen M, Jaaskelainen J, Farkkila M, Savolainen S (2003) Boron neutron capture therapy of brain tumors: clinical trials at the finnish facility using boronophenylalanine. J Neurooncol 62(1–2):123–134

    PubMed  Google Scholar 

  60. Capala J, Stenstam BH, Skold K, Rosenschold PM, Giusti V, Persson C, Wallin E, Brun A, Franzen L, Carlsson J, Salford L, Ceberg C, Persson B, Pellettieri L, Henriksson R (2003) Boron neutron capture therapy for glioblastoma multiforme: clinical studies in Sweden. J Neurooncol 62(1–2):135–144

    PubMed  Google Scholar 

  61. Dbaly V, Tovarys F, Honova H, Petruzelka L, Prokes K, Burian J, Marek M, Honzatko J, Tomandl I, Kriz O, Janku I, Mares V (2002) Contemporary state of neutron capture therapy in Czech Republic (part 2). Ces a slov Neurol Neurochir 66/99(1):60–63

    Google Scholar 

  62. Nakagawa Y, Pooh K, Kobayashi T, Kageji T, Uyama S, Matsumura A, Kumada H (2003) Clinical review of the Japanese experience with boron neutron capture therapy and a proposed strategy using epithermal neutron beams. J Neurooncol 62(1–2):87–99

    PubMed  Google Scholar 

  63. Yamamoto T, Matsumura A, Nakai K, Shibata Y, Endo K, Sakurai F, Kishi T, Kumada H, Yamamoto K, Torii Y (2004) Current clinical results of the Tsukuba BNCT trial. Appl Radiat Isot 61(5):1089–1093

    Article  PubMed  CAS  Google Scholar 

  64. Ono K, Ueda S, Oda Y, Nakagawa Y, Miyatake S, Osawa M, Kobayashi T (1997) Boron neutron capture therapy for malignant glioma at Kyoto University reactor. In: Larsson B, Crawford J, Weinreich R (eds) Advances in neutron capture therapy, vol I. Elsevier Science, Amsterdam, pp 39–45

    Google Scholar 

  65. Gonzalez SJ, Bonomi MR, Santa Cruz GA, Blaumann HR, Calzetta Larrieu OA, Menendez P, Jimenez Rebagliati R, Longhino J, Feld DB, Dagrosa MA, Argerich C, Castiglia SG, Batistoni DA, Liberman SJ, Roth BM (2004) First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome. Appl Radiat Isot 61(5):1101–1105

    Article  PubMed  CAS  Google Scholar 

  66. Liu YW, Huang TT, Jiang SH, Liu HM (2004) Renovation of epithermal neutron beam for BNCT at THOR. Appl Radiat Isot 61(5):1039–1043

    Article  PubMed  CAS  Google Scholar 

  67. Kato I, Ono K, Sakurai Y, Ohmae M, Maruhashi A, Imahori Y, Kirihata M, Nakazawa M, Yura Y (2004) Effectiveness of BNCT for recurrent head and neck malignancies. Appl Radiat Isot 61(5):1069–1073

    Article  PubMed  CAS  Google Scholar 

  68. Aihara T, Hiratsuka J, Morita N, Uno M, Sakurai Y, Maruhashi A, Ono K, Harada T (2006) First clinical case of boron neutron capture therapy for head and neck malignancies using 18 F-BPA PET. Head Neck 28(9):850–855

    Article  PubMed  Google Scholar 

  69. Kankaanranta L, Seppala T, Koivunoro H, Saarilahti K, Atula T, Collan J, Salli E, Kortesniemi M, Uusi-Simola J, Makitie A, Seppanen M, Minn H, Kotiluoto P, Auterinen I, Savolainen S, Kouri M, Joensuu H (2007) Boron neutron capture therapy in the treatment of locally recurred head and neck cancer. Int J Radiat Oncol Biol Phys 69(2):475–482

    Article  PubMed  Google Scholar 

  70. Tamura Y, Miyatake S, Nonoguchi N, Miyata S, Yokoyama K, Doi A, Kuroiwa T, Asada M, Tanabe H, Ono K (2006) Boron neutron capture therapy for recurrent malignant meningioma. Case report. J Neurosurg 105(6):898–903

    Article  PubMed  Google Scholar 

  71. Suzuki M, Endo K, Satoh H, Sakurai Y, Kumada H, Kimura H, Masunaga S, Kinashi Y, Nagata K, Maruhashi A, Ono K (2008) A novel concept of treatment of diffuse or multiple pleural tumors by boron neutron capture therapy (BNCT). Radiother Oncol 88(2):192–195

    Article  PubMed  Google Scholar 

  72. Suzuki M, Sakurai Y, Hagiwara S, Masunaga S, Kinashi Y, Nagata K, Maruhashi A, Kudo M, Ono K (2007) First attempt of boron neutron capture therapy (BNCT) for hepatocellular carcinoma. Jpn J Clin Oncol 37(5):376–381

    Article  PubMed  Google Scholar 

  73. Gabel D, Sauerwein W (1994) Clinical implementation of boron neutron capture therapy in Europe. In: Amaldi U, Larsson B (eds) Hadrontherapy in oncology. Elsevier Science, Amsterdam, pp 509–517

    Google Scholar 

  74. Sauerwein W, Hideghéty K, Gabel D, Moss RL (1998) European clinical trials of boron neutron capture therapy for glioblastoma. Nuclear News 41(2):54–56

    Google Scholar 

  75. Hideghety K, Sauerwein W, Haselsberger K, Grochulla F, Fankhauser H, Moss R, Huiskamp R, Gabel D, de Vries M (1999) Postoperative treatment of glioblastoma with BNCT at the petten irradiation facility (EORTC protocol 11,961). Strahlenther Onkol 175(Suppl 2):111–114

    Article  PubMed  Google Scholar 

  76. Gahbauer R, Gupta N, Blue T, Sauerwein W, Wambersie A (2001) Reporting of BNCT irradiation: application of the ICRU recommendations to the specific situation in BNCT. In: Hawthorne MF, Shelly K, Wiersema RJ (eds) Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New York, pp 565–569

    Chapter  Google Scholar 

  77. Rassow J, Stecher-Rasmussen F, Voorbraak W, Moss R, Vroegindeweij C, Hideghéty K, Sauerwein W (2001) Comparison of quality assurance for performance and safety characteristics of the facility for boron neutron capture therapy in Petten/NL with medical electron accelerators. Radiother Oncol 59(1):99–108

    Article  PubMed  CAS  Google Scholar 

  78. Hüsing J, Sauerwein W, Hideghety K, Jöckel KH (2001) A scheme for a dose-escalation study when the event is lagged. Stat Med 20(22):3323–3334

    Article  PubMed  Google Scholar 

  79. Sauerwein W (2003) Therapeutic strategies for boron neutron capture therapy (boron imaging). Today’s research for tomorrow’s treatments – cell factory research projects with clinical relevance: 14–15. Publications Office of the EU Commission EUR20802 ISBN 92-894-5957-3

    Google Scholar 

  80. Verbakel WF, Sauerwein W, Hideghety K, Stecher-Rasmussen F (2003) Boron concentrations in brain during boron neutron capture therapy: in vivo measurements from the phase I trial EORTC 11961 using a gamma-ray telescope. Int J Radiat Oncol Biol Phys 55(3):743–756

    Article  PubMed  CAS  Google Scholar 

  81. Rassow J, Sauerwein W, Wittig A, Bourhis-Martin E, Hideghéty K, Moss R (2004) Advantage and limitations of weighting factors and weighted dose quantities and their units in boron neutron capture therapy. Med Phys 31(5):1128–1134

    Article  PubMed  CAS  Google Scholar 

  82. van Rij CM, Sinjewel A, van Loenen AC, Sauerwein WA, Wittig A, Kriz O, Wilhelm AJ (2005) Stability of 10B-L-boronophenylalanine-fructose injection. Am J Health Syst Pharm 62(24):2608–2610

    Article  PubMed  CAS  Google Scholar 

  83. Vos MJ, Turowski B, Zanella FE, Paquis P, Siefert A, Hideghety K, Haselsberger K, Grochulla F, Postma TJ, Wittig A, Heimans JJ, Slotman BJ, Vandertop WP, Sauerwein W (2005) Radiologic findings in patients treated with boron neutron capture therapy for glioblastoma multiforme within EORTC trial 11961. Int J Radiat Oncol Biol Phys 61(2):392–399

    Article  PubMed  Google Scholar 

  84. Wittig A, Moss RL, Stecher-Rasmussen F, Appelman K, Rassow J, Roca A, Sauerwein W (2005) Neutron activation of patients following boron neutron capture therapy of brain tumors at the high flux reactor (HFR) Petten (EORTC Trials 11961 and 11011). Strahlenther Onkol 181(12):774–782

    Article  PubMed  Google Scholar 

  85. Sauerwein W, Moss R (eds) 2009 Requirements for boron neutron capture therapy (BNCT) at a nuclear research reactor. EUR 2383 EN. Office for Official Publications of the European Commission, Luxembourg. EUR – Scientific and Technical Research series – ISSN 1018–5593. ISBN 978-92-79-12431-0. DOI 10.2790/11743

  86. IAEA (2001) Current status of neutron capture therapy. IAEA-TECDOC-1223 Technical reports series. International Atomic Energy Agency, Vienna

    Google Scholar 

  87. Järvinnen H, Voorbraak WP, Auterinen I, Gonçalves IC, Grseen S, Kosunen A, Marek M, Mijnheer BJ, Moss RL, Rassow J, Sauerwein W, Savolainen, Serén T, Stecher-Rasmussen F, Uusi-Simola J, Zsolnay EM (2003) Recommendations for the dosimetry of boron neutron capture therapy (BNCT). NRG Report 21425/03.55339/C Petten (NL)

    Google Scholar 

  88. Gueulette J, Binns PJ, De Coster BM, Lu XQ, Roberts SA, Riley KJ (2005) RBE of the MIT epithermal neutron beam for crypt cell regeneration in mice. Radiat Res 164(6):805–809

    Article  PubMed  CAS  Google Scholar 

  89. Binns PJ, Riley KJ, Harling OK (2005) Epithermal neutron beams for clinical studies of boron neutron capture therapy: a dosimetric comparison of seven beams. Radiat Res 164(2):212–220

    Article  PubMed  CAS  Google Scholar 

  90. Binns PJ, Riley KJ, Harling OK, Auterinen I, Marek M, Kiger WS 3rd (2004) Progress with the NCT international dosimetry exchange. Appl Radiat Isot 61(5):865–868

    Article  PubMed  CAS  Google Scholar 

  91. Binns PJ, Riley KJ, Harling OK, Kiger WS III, Munck af Rosenschöld PM, Giusti V, Capala J, Sköld K, Auterinen I, Serén T, Kotiluoto P, Uusi-Simola J, Marek M, Viererbl L, Spurny F (2005) An international dosimetry exchange for boron neutron capture therapy, part I: absorbed dose measurements. Med Phys 32(12):3729–3736

    Article  PubMed  CAS  Google Scholar 

  92. Zonta A, Prati U, Roveda L, Ferrari C, Valsecchi P, Trotta F, DeRoberto A, Rossella C, Bernardi G, Zonta C, Marchesi P, Pinelli T, Altieri S, Bruschi P, Fossati F, Barni S, Chiari P, Nano R (2000) La terapia per cattura neutronica (BNCT) dei tumori epatici. Boll Soc Med Chir 114(2):123–144

    Google Scholar 

  93. Nano R, Barni S, Chiari P, Pinelli T, Fossati F, Altieri S, Zonta C, Prati U, Roveda L, Zonta A (2004) Efficacy of boron neutron capture therapy on liver metastases of colon adenocarcinoma: optical and ultrastructural study in the rat. Oncol Rep 11(1):149–153

    PubMed  Google Scholar 

  94. Roveda L, Zonta A, Staffieri F, Timurian D, DiVenere B, Bakeine GJ, Crovace A, Prati U (2009) Experimental modified orthotopic piggy-back liver autotransplantation. Appl Radiat Isot 67(7–8 Suppl):S306–S308

    Article  PubMed  CAS  Google Scholar 

  95. Zonta A, Pinelli T, Prati U, Roveda L, Ferrari C, Clerici AM, Zonta C, Mazzini G, Dionigi P, Altieri S, Bortolussi S, Bruschi P, Fossati F (2009) Extra-corporeal liver BNCT for the treatment of diffuse metastases: what was learned and what is still to be learned. Appl Radiat Isot 67(7–8 Suppl):S67–S75

    Article  PubMed  CAS  Google Scholar 

  96. Nievaart VA, Moss RL, Kloosterman JL, van der Hagen TH, van Dam H, Wittig A, Malago M, Sauerwein W (2006) Design of a rotating facility for extracorporal treatment of an explanted liver with disseminated metastases by boron neutron capture therapy with an epithermal neutron beam. Radiat Res 166(1):81–88

    Article  PubMed  CAS  Google Scholar 

  97. Wittig A, Malago M, Collette L, Huiskamp R, Buhrmann S, Nievaart V, Kaiser GM, Jockel KH, Schmid KW, Ortmann U, Sauerwein WA (2008) Uptake of two 10B-compounds in liver metastases of colorectal adenocarcinoma for extracorporeal irradiation with boron neutron capture therapy (EORTC Trial 11001). Int J Cancer 122(5):1164–1171

    Article  PubMed  CAS  Google Scholar 

  98. Wittig A, Moss R, Kaiser GM, Malago M, Nievaart V, Sauerwein WA (2009) Boron neutron capture therapy for an explanted organ: the logistical challenges. Appl Radiat Isot 67(7–8 Suppl):S302–S305

    Article  PubMed  CAS  Google Scholar 

  99. Hampel G, Wortmann B, Blaickner M, Knorr J, Kratz JV, Lizon Aguilar A, Minouchehr S, Nagels S, Otto G, Schmidberger H, Schutz C, Vogtlander L (2009) Irradiation facility at the TRIGA Mainz for treatment of liver metastases. Appl Radiat Isot 67(7–8 Suppl):S238–S241

    Article  PubMed  CAS  Google Scholar 

  100. Nagels S, Hampel G, Kratz JV, Aguilar AL, Minouchehr S, Otto G, Schmidberger H, Schutz C, Vogtlander L, Wortmann B (2009) Determination of the irradiation field at the research reactor TRIGA Mainz for BNCT. Appl Radiat Isot 67(7–8 Suppl):S242–S246

    Article  PubMed  CAS  Google Scholar 

  101. Cardoso J, Nievas S, Pereira M, Schwint A, Trivillin V, Pozzi E, Heber E, Monti Hughes A, Sanchez P, Bumaschny E, Itoiz M, Liberman S (2009) Boron biodistribution study in colorectal liver metastases patients in Argentina. Appl Radiat Isot 67(7–8 Suppl):S76–S79

    Article  PubMed  CAS  Google Scholar 

  102. Gadan M, Crawley V, Thorp S, Miller M (2009) Preliminary liver dose estimation in the new facility for biomedical applications at the RA-3 reactor. Appl Radiat Isot 67(7–8 Suppl):S206–S209

    Article  PubMed  CAS  Google Scholar 

  103. Catterall M, Rogers C, Thomlinson RH, Field SB (1971) An investigation into the clinical effects of fast neutrons. Methods and early observations. Br J Radiol 44(524):603–611

    Article  PubMed  CAS  Google Scholar 

  104. Catterall M, Bewley DK, Sutherland I (1977) Second report on results of a randomized clinical trial of fast neutrons compared with X or gamma rays in the treatment of advanced tumours of head and neck. Br Med J (London) 1:1642

    Article  CAS  Google Scholar 

  105. Battermann JJ (1978) Clinical experience with fast neutrons in Amsterdam. Radiol Clin 47(6):464–472

    CAS  Google Scholar 

  106. Schmitt G, Sauerwein W, Scherer E (1981) Preliminary results of neutron irradiation of soft tissue sarcomas in Essen. J Eur Radiother 2:119–122

    Google Scholar 

  107. Laramore GE, Krall JM, Griffin TW, Duncan W, Richter MP, Saroja KR, Maor MH, Davis LW (1993) Neutron versus photon irradiation for unresectable salivary gland tumors: final report of an RTOG-MRC randomized clinical trial. Radiation Therapy Oncology Group. Medical Research Council. Int J Radiat Oncol Biol Phys 27(2):235–240

    Article  PubMed  CAS  Google Scholar 

  108. Lindsley KL, Cho P, Stelzer KJ, Koh WJ, Austin-Seymour M, Russell KJ, Laramore GE, Griffin TW (1996) Clinical trials of neutron radiotherapy in the United States. Bull Cancer Radiother 83 Suppl(Suppl 1):78s–86s

    PubMed  CAS  Google Scholar 

  109. Wambersie A, Menzel HG (1996) Present status, trends and needs in fast neutron therapy. Bull Cancer Radiother 83 Suppl((Suppl1)):68s–77s

    PubMed  CAS  Google Scholar 

  110. Waterman FM, Kuchnir FT, Skaggs LS, Bewley DK, Page BC, Attix FH (1978) The use of B-10 to enhance the tumour dose in fast-neutron therapy. Phys Med Biol 23(4):592–602

    Article  PubMed  CAS  Google Scholar 

  111. Wakabayashi H, Yoshii K, Sasuga N, Yanagi H (1983) Mixed dose distributions of fast neutrons and boron neutron captures for the fast neutron beam from YAYOI. In: First international symposium on neutron capture therapy, Brookhaven, 1983, BNL 51730

    Google Scholar 

  112. Kadosawa T, Kawasaki T, Nishimura R, Ohashi F, Takeuchi A (1985) Possible use of fast neutrons in boron neutron capture therapy for expanded or deeply located tumor lesions. In: 2nd international symposium on neutron capture therapy, Nishimura, Tokyo (1986)

    Google Scholar 

  113. Sauerwein W, Ziegler W, Olthoff K, Streffer C, Rassow J, Sack H (1989) Neutron capture therapy using a fast neutron beam: clinical considerations and physical aspects. Strahlenther Onkol 165:208–210

    PubMed  CAS  Google Scholar 

  114. Ziegler W, Sauerwein W, Streffer C (1989) Fast neutrons from the Essen Cyclotron can be used successfully for neutron capture experiments in vitro. Strahlenther Onkol 165:210–212

    PubMed  CAS  Google Scholar 

  115. Wagner FM, Koester L (1989) Fast neutrons for BNCT. Strahlenther Onkol 165(2/3):115–117

    PubMed  CAS  Google Scholar 

  116. Sauerwein W, Ziegler W, Szypniewski H, Streffer C (1990) Boron neutron capture therapy (BNCT) using fast neutrons: effects in two human tumor cell lines. Strahlenther Onkol 166:26–29

    PubMed  CAS  Google Scholar 

  117. Pöller F, Sauerwein W, Rau D, Wagner FM, Olthoff K, Rassow J, Sack H (1990) Neutronenfluenzmessungen im d(14)+Be- Neutronenstrahlungsfeld des Zyklotrons in Essen. Strahlenther Onkol 166:426–429

    PubMed  Google Scholar 

  118. Pöller F, Sauerwein W, Rassow J (1991) Dosimetry and fluence measurements with a new irradiation arrangement for neutron capture therapy of tumours in mice. Radiother Oncol 21:179–182

    Article  PubMed  Google Scholar 

  119. Pöller F, Sauerwein W, Rassow J (1993) Monte Carlo calculation of dose enhancement by neutron capture of 10B in fast neutron therapy. Phys Med Biol 38:397–410

    Article  PubMed  Google Scholar 

  120. Laramore GE, Wootton P, Livesey JC, Wilbur DS, Risler R, Phillips M, Jacky J, Buchholz TA, Griffin TW, Brossard S (1994) Boron neutron capture therapy: a mechanism for achieving a concomitant tumor boost in fast neutron radiotherapy. Int J Radiat Oncol Biol Phys 28(5):1135–1142

    Article  PubMed  CAS  Google Scholar 

  121. Pöller F, Sauerwein W (1995) Monte Carlo simulation of the biological effects of boron neutron capture irradiation with d(14)  +  Be neutrons in vitro. Radiat Res 142:98–106

    Article  PubMed  Google Scholar 

  122. Pöller F, Bauch T, Sauerwein W, Böcker W, Wittig A, Streffer C (1996) Comet assay study of DNA damage and repair of tumour cells following boron neutron capture irradiation with fast d(14)  +  Be neutrons. Int J Radiat Biol 70:593–602

    Article  PubMed  Google Scholar 

  123. Laramore GE, Risler R, Griffin TW, Wootton P, Wilbur DS (1996) Fast neutron radiotherapy and boron neutron capture therapy: application to a human melanoma test system. Bull Cancer Radiother 83 Suppl(Suppl 1):191s–197s

    PubMed  CAS  Google Scholar 

  124. Ludemann L, Matzen T, Schmidt R, Scobel W (1996) BNCT as a boost for fast neutron therapy? Bull Cancer Radiother 83 Suppl(Suppl 1):198s–200s

    PubMed  CAS  Google Scholar 

  125. Breteau N, Sauerwein W, Gabel D, Chauvel P (1997) Potentialisation par captures de neutrons pour les glioblasomes inextirpables. J Chim Phys 94:1872–1880

    Google Scholar 

  126. Pignol JP, Courdi A, Paquis P, Iborra-Brassart N, Fares G, Hachem A, Lonjon M, Breteau N, Sauerwein W, Gabel D, Chauvel P (1997) Potentialisation par Captures de Neutrons pour les glioblastomes inextirpables [Neutron capture enhancement of fast neutron irradiation for unremovable glioblastoma]. J Chim Phys Phys Chim Biol 94(10):1827–1830

    CAS  Google Scholar 

  127. Wittig A, Sauerwein W, Pöller F, Fuhrmann C, Hidghéty K, Streffer C (1998) Evaluation of boron neutron capture effects in cell culture using sulforhodamine-B assay and a colony assay. Int J Radiat Biol 73:679–690

    Article  PubMed  CAS  Google Scholar 

  128. Pöller F, Wittig A, Sauerwein W (1998) Calculation of boron neutron capture cell inactivation in vitro based on particle track structure and x-ray sensitivity. Radiat Environ Biophys 37:117–123

    Article  PubMed  Google Scholar 

  129. Rassow J (1979) Die Zyklotronanlage im Universitätsklinikum Essen CIRCE und PARCE. Biotechnische Umschau 3:36–46

    Google Scholar 

  130. Wagner F, Kneschaurek P, Kastenmüller A, Loeper-Kabasakal B, Kampfer S, Breitkreutz H, Waschkowski W, Molls M, Petry W (2008) The Munich fission neutron therapy facility MEDAPP at the research reactor FRM II. Strahlenther Onkol 184(12):643–646

    Article  PubMed  Google Scholar 

  131. Farr LE, Sweet WH, Locksley HB, Robertson JS (1954) Neutron capture therapy of gliomas using boron-10. Trans Am Neurol Assoc 79:110–113

    Google Scholar 

  132. Farr LE, Sweet WH, Robertson JS, Foster CG, Locksley HB, Sutherland DL, Mendelsohn ML, Stickley EE (1954) Neutron capture therapy with boron in the treatment of glioblastoma multiforme. Am J Roent Ther Nucl Med 71:279–293

    CAS  Google Scholar 

  133. Farr LE, Robertson JS, Stickley EE (1954) Physics and physiology of neutron capture therapy. Proc Natl Acad Sci USA 40:1087–1093

    Article  PubMed  CAS  Google Scholar 

  134. Godwin JT, Farr LE, Sweet WH, Robertson JS (1955) Pathological study of eight patients with glioblastoma multiforme treated by neutron capture therapy using boron 10. Cancer 8:601–615

    Article  Google Scholar 

  135. Kageji T, Nakagawa Y, Kitamura K, Matsumoto K, Hatanaka H (1997) Pharmacokinetics and boron uptake of BSH (Na2B12H11SH) in patients with intracranial tumors. J Neurooncol 33(1–2):117–130

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang A. G. Sauerwein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sauerwein, W.A.G. (2012). Principles and Roots of Neutron Capture Therapy. In: Sauerwein, W., Wittig, A., Moss, R., Nakagawa, Y. (eds) Neutron Capture Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31334-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31334-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31333-2

  • Online ISBN: 978-3-642-31334-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics