Skip to main content
Log in

The munich fission neutron therapy facility MEDAPP at the research reactor FRM II

Münchener Reaktorneutronentherapieeinrichtung MEDAPP am Forschungsreaktor FRM II

  • Current Discussion
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

At the new research reactor FRM II of the Technical University of Munich (TUM), the facility for Medical Applications (MEDAPP) was installed where fast neutrons are available as a beam for medical use.

Material and Methods

Thermal neutrons induce fission in a pair of uranium converter plates and generate fast neutrons which are guided to the patient by a beam tube. The maximum opening of the multi leaf collimator (MLC) is 30 × 20 cm2 W × H. The beam is characterized by neutron-photon mixed beam phantom dosimetry. Specific safety measures are outlined.

Results

The neutron and gamma dose rates are 0.52 Gy/min and 0.20 Gy/min, respectively, in 2 cm depth of a water phantom. The half maximum depth of the neutron dose rate in water is 5.4 cm (mean neutron energy 1.9 ± 0.1 MeV). Conformity with the European Medical Devices Directive (MDD) 93/42/EEG, was proven so that MEDAPP has a CE mark and since February 2007 also the license for clinical operation.

Conclusion

The clinical neutron irradiations of malignant tumors, which were performed at the former research reactor FRM until 2000, can be continued at FRM II under improved conditions. First patients were irradiated in June 2007.

Zusammenfassung

Ziel

Am Forschungsreaktor FRM II der Technischen Universität München (TUM) wurde mit der Sondereinrichtung MEDAPP ein Strahl schneller Reaktorneutronen für medizinische Nutzung zur Verfügung gestellt.

Material und Methodik

Thermische Neutronen induzieren in einem Paar von Konverterplatten Uranspaltungen und erzeugen schnelle Neutronen, die durch ein Strahlrohr zum Patienten geleitet werden. Die maximale Öffnung des Lamellenkollimators ist 30 × 20 cm2 (B × H). Der Strahl wurde durch Dosimetrie des Neutron-Gamma-Mischfeldes im Phantom charakterisiert. Spezifische Sicherheitsmaßnahmen werden genannt.

Ergebnisse

Die Neutronen- und Gammadosisleistung in 2 cm Tiefe eines Wasserphantoms sind 0,52 Gy/min bzw. 0,20 Gy/min. Die Halbwerttiefe der Neutronendosisleistung beträgt 5,4 cm (mittlere Neutronenenergie 1,9 ± 0,1 MeV). Die Konformität mit der Direktive MDD 93/42/EEG des Medizinproduktegesetzes wurde nachewiesen, so dass MEDAPP ein CE-Zeichen hat und seit Februar 2007 auch die Genehmigung für die Anwendung in der Therapie des Menschen.

Schlussfolgerung

Die Neutronenbestrahlungen, die am früheren Forschungsreaktor München FRM bis Juli 2000 durchgeführt wurden, können am FRM II unter verbesserten Bedingungen fortgesetzt werden. Die ersten Patienten wurden im Juni 2007 bestrahlt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auberger T, Reuschel W, Kneschaurek P, et al. Reactor neutron therapy of locally recurrent breast cancer. In: Kogelnik HD, editor. Progress in Radio-Oncology, Vol. V, Monduzzi Editore, Bologna 1995;691–694.

    Google Scholar 

  2. Auberger T, Reuschel W, Kneschaurek P, et al. The role of fast neutrons in treatment of squamous cell carcinomas of the head and neck: The European experience. Radiologie 1995;35(Suppl. 1):150.

    Google Scholar 

  3. Bley CR, Ohlerth S, Roos M, et al. Influence of pretreatment polarographically measured oxygenation levels in spontaneous canine tumors treated with radiation therapy. Strahlenther Onkol 2006;182:518–524.

    Article  Google Scholar 

  4. Breitkreutz H, Wagner FM, Röhrmoser A, et al. Spectral fluence rates of the fast reactor neutron beam MedApp at FRM II. Nucl Inst and Meth 2008;593A:466–471.

    Google Scholar 

  5. Bremer M, Neuhofer C, Zimmermann F, et al. Palliative radiotherapy of malignant melanoma with reactor fission neutron therapy (RENT): a prospective study. Rad Oncol Investig 1999;7:118–124.

    Article  CAS  Google Scholar 

  6. Grosu AL, Molls M, Zimmermann FB, et al. High-precision radiation therapy with integrated biological imaging and tumor monitoring — Evolution of the Munich concept and future research options. Strahlenther Onkol 2006;182:361–368.

    Article  PubMed  Google Scholar 

  7. Huber R, Schraube H, Nahrstedt U, et al. Dose-response relationships of micronuclei in human lymphocytes induced by fission neutrons and by low LET radiations. Mutat Res 1994;306:135–141.

    PubMed  CAS  Google Scholar 

  8. Kampfer S, Wagner FM, Loeper B, et al. MEDAPP: Die neue Neutronentherapieanlage am FRM II in Garching. Strahlenther Onkol 2007;183 (Sondemr.1):72.

    Google Scholar 

  9. Karger CP, Jaekel O. Current status and new developments in ion therapy. Strahlenther Onkol 2007;183:295–300.

    Article  PubMed  Google Scholar 

  10. Koester L. Applicability of reactor fission neutrons for radiation therapy of cancer. Nucl Sci Appl 1984;2:79–96.

    CAS  Google Scholar 

  11. Kummermehr J, Schraube H, Ries G, et al. Biological effectiveness of neutrons and π-mesons in gut, bone, and transplantable tumors. Strahlenther Onkol 1989;165:276–282.

    PubMed  CAS  Google Scholar 

  12. Murray EM, Werner ID, Schmitt G, et al. Neutron versus photon radiotherapy for local control in inoperable breast cancer. Strahlenther Onkol 2005;181:77–81.

    Article  PubMed  Google Scholar 

  13. Ries G, Breit A, Kummermehr J, et al. The RENT Project: Radiobiological Results and Planned Clinical Application. Strahlenther Onkol 1985;161:791–793.

    CAS  Google Scholar 

  14. Sakata KI, Someya M, Nagakura H, et al. Clinical study of hypoxia using endogenous hypoxic markers and polarographic oxygen electrodes. Strahlenther Onkol 2006;182:511–517.

    Article  PubMed  Google Scholar 

  15. Schmid E, Schraube H, Bauchinger M. Chromosome aberration frequencies in human lymphocytes irradiated in a phantom by a mixed beam of fission neutrons and γ-rays. Int J Radiat Biol 1998;73:263–267.

    Article  PubMed  CAS  Google Scholar 

  16. Schraube H, Alberts WG, Brede H, et al. Die Bestimmung der Energiedosis eines Neutronenstrahls mit Hilfe von Ionisationskammern — Ein Kompendium (GSF-Bericht 10/03). GSF-Forschungszentrum für Umwelt und Gesundheit, Neuherberg 2003;40pp.

  17. Schulz-Ertner D, Nikoghosyan A, Hof H, et al. Carbon ion treatment in low-grade-chondrosarcoma of the skull base. Strahlenther Onkol 2006;182:Suppl.1:29.

    Google Scholar 

  18. Tacev, T, Vacek, A, Ptackova, B, et al. Hypoxic versus normoxic external-beam irradiation of cervical carcinoma combined with californium-252 neutron brachytherapy — comparative treatment results of a 5-year randomized study. Strahlenther Onkol 2005;181:273–284.

    Article  PubMed  Google Scholar 

  19. Tanaka K, Gajendiran N, Mohankumar M. RBE values and dose rate effects on the ratio of translocation to dicentrics yields in neutrons with low-energy spectrum. International Congress Series 2002;1236:383–385.

    Article  Google Scholar 

  20. Thamm R, Loeper B, Wagner FM, et al. Entwicklung einer digitalen Patientenakte ‘RISSKA’ für die Strahlentherapie mit Neutronen am Forschungsreaktor München (FRM II). Strahlenther Onkol 2006;182 (Sondernr.1):115.

    Google Scholar 

  21. Wagner FM, Koester L, Auberger Th, et al. Fast reactor neutrons for the treatment of superficial carcinomas. Nucl Sci Eng 1992;110:32–37.

    CAS  Google Scholar 

  22. Wittig A, Moss RL, Stecher-Rasmussen F, et al. Neutron activation of patients following boron neutron capture therapy of brain tumors at the High Flux Reactor (HFR) Petten (EORTC trials 11961 and 11011). Strahlenther Onkol 2005;181:774–782.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz M. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, F.M., Kneschaurek, P., Kastenmüller, A. et al. The munich fission neutron therapy facility MEDAPP at the research reactor FRM II. Strahlenther Onkol 184, 643–646 (2008). https://doi.org/10.1007/s00066-008-1878-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-008-1878-3

Key Words

Schlüsselwörter

Navigation