Skip to main content

Reactive Oxygen Species and Endothelium-Derived Contracting Factor (EDCF) – Partners in Endothelial Dysfunction

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

The augmented release of endothelium-derived contracting factor(s) is a hallmark of endothelial dysfunction. The most common endothelium-derived contracting factors (EDCFs) are produced by endothelial cyclooxygenase(s) and cause activation of thromboxane-prostanoid (TP) receptors of the underlying vascular smooth muscle cells. Endothelium-dependent contractions are exacerbated by aging, endothelial regeneration, hypertension, and diabetes. Elevated oxidative stress and the resulting increased production of reactive oxygen species (ROS) are key aspects of cardiovascular disease and play an important role in the occurrence and/or modulation of endothelium-dependent contraction. This present review summarizes the current knowledge on the interactions between ROS and EDCF in the genesis of endothelial dysfunction in animals and humans as a therapeutic target to restore proper endothelial function and slow down the progression of vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arnet UA, Novosel D, Barton M, Noll G, Ganten D, Lüscher TF (1999) Endothelial dysfunction in the aorta of transgenic rats harboring the mouse Ren-2 gene. Endothelium 6:175–184

    Article  CAS  PubMed  Google Scholar 

  • Auch-Schwelk W, Katusic ZS, Vanhoutte PM (1989) Contractions to oxygen-derived free radicals are augmented in aorta of the spontaneously hypertensive rat. Hypertension 13:859–864

    Article  CAS  PubMed  Google Scholar 

  • Auch-Schwelk W, Katusic ZS, Vanhoutte PM (1990) Thromboxane A2 receptor antagonists inhibit endothelium-dependent contractions. Hypertension 15:699–703

    Article  CAS  PubMed  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  CAS  PubMed  Google Scholar 

  • Boeckx W, Fossion E, Guelinckx P, Demey R, Dewilde R (1982) Free flaps in head and neck surgery. Acta Chir Belg 82:219–229

    CAS  PubMed  Google Scholar 

  • Camacho M, Lopez-Belmonte J, Vila L (1998) Rate of vasoconstrictor prostanoids released by endothelial cells depends on cyclooxygenase-2 expression and prostaglandin I synthase activity. Circ Res 83:353–365

    Article  CAS  PubMed  Google Scholar 

  • Corriu C, Feletou M, Edwards G, Weston AH, Vanhoutte PM (2001) Differential effects of prostacyclin and Iloprost in the isolated carotid artery of the guinea-pig. Eur J Pharmacol 426:89–94

    Article  CAS  PubMed  Google Scholar 

  • Davis JO, DeForrest JM, Freeman RH, Echtenkamp SF, Seymour AA, Williams GM (1980) Renal prostaglandins, renin release, and renal hemodynamic function in high renin states. Clin Exp Hypertens 2:563–573

    Article  CAS  PubMed  Google Scholar 

  • Defreyn G, Deckmyn H, Vermylen J (1982) A thromboxane synthetase inhibitor reorients endoperoxide metabolism in whole blood towards prostacyclin and prostaglandin E2. Thromb Res 26:389–400

    Article  CAS  PubMed  Google Scholar 

  • De Mey JG, Vanhoutte PM (1982) Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium. Circ Res 51:439–447

    Article  PubMed  Google Scholar 

  • De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130:963–974

    Article  PubMed Central  PubMed  Google Scholar 

  • Dhein S, Salameh A, Klaus W (1989) A new endothelium-dependent vasoconstricting factor (EDCF) in pig coronary artery. Eur Heart J 10(Suppl F):82–85

    Article  CAS  PubMed  Google Scholar 

  • Doroudi R, Gan LM, Selin Sjogren L, Jern S (2000) Effects of shear stress on eicosanoid gene expression and metabolite production in vascular endothelium as studied in a novel biomechanical perfusion model. Biochem Biophys Res Commun 269:257–264

    Article  CAS  PubMed  Google Scholar 

  • Egashira K, Inou T, Hirooka Y, Yamada A, Urabe Y, Takeshita A (1993) Evidence of impaired endothelium-dependent coronary vasodilatation in patients with angina pectoris and normal coronary angiograms. N Engl J Med 328:1659–1664

    Article  CAS  PubMed  Google Scholar 

  • Feletou M, Tang EH, Vanhoutte PM (2008) Nitric oxide the gatekeeper of endothelial vasomotor control. Front Biosci 13:4198–4217

    Article  CAS  PubMed  Google Scholar 

  • Feletou M, Huang Y, Vanhoutte PM (2011) Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol 164:894–912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  CAS  PubMed  Google Scholar 

  • Gao Y (2010) The multiple actions of NO. Pflugers Arch 459:829–839

    Article  CAS  PubMed  Google Scholar 

  • Ge T, Hughes H, Junquero DC, Wu KK, Vanhoutte PM, Boulanger CM (1995) Endothelium-dependent contractions are associated with both augmented expression of prostaglandin H synthase-1 and hypersensitivity to prostaglandin H2 in the SHR aorta. Circ Res 76:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Gluais P, Edwards G, Weston AH, Vanhoutte PM, Feletou M (2005a) Hydrogen peroxide and endothelium-dependent hyperpolarization in the guinea-pig carotid artery. Eur J Pharmacol 513:219–224

    Article  CAS  PubMed  Google Scholar 

  • Gluais P, Lonchampt M, Morrow JD, Vanhoutte PM, Feletou M (2005b) Acetylcholine-induced endothelium-dependent contractions in the SHR aorta: the Janus face of prostacyclin. Br J Pharmacol 146:834–845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gluais P, Paysant J, Badier-Commander C, Verbeuren T, Vanhoutte PM, Feletou M (2006) In SHR aorta, calcium ionophore a-23187 releases prostacyclin and thromboxane A2 as endothelium-derived contracting factors. Am J Physiol Heart Circ Physiol 291:H2255–H2264

    Article  CAS  PubMed  Google Scholar 

  • Hamberg M, Svensson J, Samuelsson B (1974) Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins. Proc Natl Acad Sci USA 71:3824–3828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heymes C, Habib A, Yang D, Mathieu E, Marotte F, Samuel J, Boulanger CM (2000) Cyclo-oxygenase-1 and -2 contribution to endothelial dysfunction in ageing. Br J Pharmacol 131:804–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirao A, Kondo K, Takeuchi K, Inui N, Umemura K, Ohashi K, Watanabe H (2008) Cyclooxygenase-dependent vasoconstricting factor(s) in remodelled rat femoral arteries. Cardiovasc Res 79:161–168

    Article  CAS  PubMed  Google Scholar 

  • Ignarro LJ, Edwards JC, Gruetter DY, Barry BK, Gruetter CA (1980) Possible involvement of S-nitrosothiols in the activation of guanylate cyclase by nitroso compounds. FEBS Lett 110:275–278

    Article  CAS  PubMed  Google Scholar 

  • Kagota S, Yamaguchi Y, Nakamura K, Kunitomo M (2000) Altered endothelium-dependent responsiveness in the aortas and renal arteries of Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of non-insulin-dependent diabetes mellitus. Gen Pharmacol 34:201–209

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Iwama Y, Okumura K, Hashimoto H, Ito T, Satake T (1990) Prostaglandin H2 may be the endothelium-derived contracting factor released by acetylcholine in the aorta of the rat. Hypertension 15:475–481

    Article  CAS  PubMed  Google Scholar 

  • Katusic ZS, Vanhoutte PM (1989) Superoxide anion is an endothelium-derived contracting factor. Am J Physiol 257:H33–H37

    CAS  PubMed  Google Scholar 

  • Katusic ZS, Shepherd JT, Vanhoutte PM (1987) Endothelium-dependent contraction to stretch in canine basilar arteries. Am J Physiol 252:H671–H673

    CAS  PubMed  Google Scholar 

  • Katusic ZS, Shepherd JT, Vanhoutte PM (1988) Endothelium-dependent contractions to calcium ionophore A23187, arachidonic acid, and acetylcholine in canine basilar arteries. Stroke 19:476–479

    Article  CAS  PubMed  Google Scholar 

  • Katusic ZS, Schugel J, Cosentino F, Vanhoutte PM (1993) Endothelium-dependent contractions to oxygen-derived free radicals in the canine basilar artery. Am J Physiol 264:H859–H864

    CAS  PubMed  Google Scholar 

  • Katz SD, Biasucci L, Sabba C, Strom JA, Jondeau G, Galvao M, Solomon S, Nikolic SD, Forman R, LeJemtel TH (1992) Impaired endothelium-mediated vasodilation in the peripheral vasculature of patients with congestive heart failure. J Am Coll Cardiol 19:918–925

    Article  CAS  PubMed  Google Scholar 

  • Koga T, Takata Y, Kobayashi K, Takishita S, Yamashita Y, Fujishima M (1989) Age and hypertension promote endothelium-dependent contractions to acetylcholine in the aorta of the rat. Hypertension 14:542–548

    Article  CAS  PubMed  Google Scholar 

  • Li P, Ferrario CM, Brosnihan KB (1998) Losartan inhibits thromboxane A2-induced platelet aggregation and vascular constriction in spontaneously hypertensive rats. J Cardiovasc Pharmacol 32:198–205

    Article  CAS  PubMed  Google Scholar 

  • Ling JJ, Sun YJ, Zhu DY, Chen Q, Han X (2005a) Potential role of NO in modulation of COX-2 expression and PGE2 production in pancreatic beta-cells. Acta Biochim Biophys Sin (Shanghai) 37:139–146

    Article  CAS  Google Scholar 

  • Ling X, Cota-Gomez A, Flores NC, Hernandez-Saavedra D, McCord JM, Marecki JC, Haskins K, McDuffie M, Powers K, Kench J et al (2005b) Alterations in redox homeostasis and prostaglandins impair endothelial-dependent vasodilation in euglycemic autoimmune nonobese diabetic mice. Free Radic Biol Med 39:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Lüscher TF, Vanhoutte PM (1986) Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 8:344–348

    Article  PubMed  Google Scholar 

  • Matsumoto T, Kakami M, Noguchi E, Kobayashi T, Kamata K (2007) Imbalance between endothelium-derived relaxing and contracting factors in mesenteric arteries from aged OLETF rats, a model of type 2 diabetes. Am J Physiol Heart Circ Physiol 293:H1480–H1490

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Noguchi E, Ishida K, Kobayashi T, Yamada N, Kamata K (2008) Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes. Am J Physiol Heart Circ Physiol 295:H1165–H1176

    Article  CAS  PubMed  Google Scholar 

  • Mombouli JV, Vanhoutte PM (1993) Purinergic endothelium-dependent and -independent contractions in rat aorta. Hypertension 22:577–583

    Article  CAS  PubMed  Google Scholar 

  • Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665

    Article  CAS  PubMed  Google Scholar 

  • Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ 2nd (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87:9383–9387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okon EB, Szado T, Laher I, McManus B, van Breemen C (2003) Augmented contractile response of vascular smooth muscle in a diabetic mouse model. J Vasc Res 40:520–530

    Article  PubMed  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Lee JJ, Vanhoutte PM (1999) Endothelin-1 releases endothelium-derived endoperoxides and thromboxane A2 in porcine coronary arteries with regenerated endothelium. Zhongguo Yao Li Xue Bao 20:872–878

    CAS  PubMed  Google Scholar 

  • Pomerantz K, Sintetos A, Ramwell P (1978) The effect of prostacyclin on the human umbilical artery. Prostaglandins 15:1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Qu C, Leung SW, Vanhoutte PM, Man RY (2010) Chronic inhibition of nitric-oxide synthase potentiates endothelium-dependent contractions in the rat aorta by augmenting the expression of cyclooxygenase-2. J Pharmacol Exp Ther 334:373–380

    Article  CAS  PubMed  Google Scholar 

  • Rapoport RM, Williams SP (1996) Role of prostaglandins in acetylcholine-induced contraction of aorta from spontaneously hypertensive and Wistar-Kyoto rats. Hypertension 28:64–75

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Vanhoutte PM (2008) Oxidative stress and COX cause hyper-responsiveness in vascular smooth muscle of the femoral artery from diabetic rats. Br J Pharmacol 154:639–651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi Y, Vanhoutte PM (2009) Reactive oxygen-derived free radicals are key to the endothelial dysfunction of diabetes. J Diabetes 1:151–162

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Feletou M, Ku DD, Man RY, Vanhoutte PM (2007a) The calcium ionophore A23187 induces endothelium-dependent contractions in femoral arteries from rats with streptozotocin-induced diabetes. Br J Pharmacol 150:624–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi Y, So KF, Man RY, Vanhoutte PM (2007b) Oxygen-derived free radicals mediate endothelium-dependent contractions in femoral arteries of rats with streptozotocin-induced diabetes. Br J Pharmacol 152:1033–1041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi Y, Man RY, Vanhoutte PM (2008) Two isoforms of cyclooxygenase contribute to augmented endothelium-dependent contractions in femoral arteries of 1-year-old rats. Acta Pharmacol Sin 29:185–192

    Article  CAS  PubMed  Google Scholar 

  • Spencer AG, Woods JW, Arakawa T, Singer II, Smith WL (1998) Subcellular localization of prostaglandin endoperoxide H synthases-1 and -2 by immunoelectron microscopy. J Biol Chem 273:9886–9893

    Article  CAS  PubMed  Google Scholar 

  • Taddei S, Salvetti A (2002) Endothelial dysfunction in essential hypertension: clinical implications. J Hypertens 20:1671–1674

    Article  CAS  PubMed  Google Scholar 

  • Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A (1997a) Cyclooxygenase inhibition restores nitric oxide activity in essential hypertension. Hypertension 29:274–279

    Article  CAS  PubMed  Google Scholar 

  • Taddei S, Virdis A, Mattei P, Ghiadoni L, Fasolo CB, Sudano I, Salvetti A (1997b) Hypertension causes premature aging of endothelial function in humans. Hypertension 29:736–743

    Article  CAS  PubMed  Google Scholar 

  • Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A (1998) Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 97:2222–2229

    Article  CAS  PubMed  Google Scholar 

  • Tang EH, Vanhoutte PM (2008) Gene expression changes of prostanoid synthases in endothelial cells and prostanoid receptors in vascular smooth muscle cells caused by aging and hypertension. Physiol Genomics 32:409–418

    Article  CAS  PubMed  Google Scholar 

  • Tang EH, Feletou M, Huang Y, Man RY, Vanhoutte PM (2005a) Acetylcholine and sodium Nitroprusside cause long-term inhibition of EDCF-mediated contractions. Am J Physiol Heart Circ Physiol 289:H2434–H2440

    Article  CAS  PubMed  Google Scholar 

  • Tang EH, Ku DD, Tipoe GL, Feletou M, Man RY, Vanhoutte PM (2005b) Endothelium-dependent contractions occur in the aorta of wild-type and COX2-/- knockout but not COX1-/- knockout mice. J Cardiovasc Pharmacol 46:761–765

    Article  CAS  PubMed  Google Scholar 

  • Tang EH, Leung FP, Huang Y, Feletou M, So KF, Man RY, Vanhoutte PM (2007) Calcium and reactive oxygen species increase in endothelial cells in response to releasers of endothelium-derived contracting factor. Br J Pharmacol 151:15–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang EH, Jensen BL, Skott O, Leung GP, Feletou M, Man RY, Vanhoutte PM (2008) The role of prostaglandin E and thromboxane-prostanoid receptors in the response to prostaglandin E2 in the aorta of wistar Kyoto rats and spontaneously hypertensive rats. Cardiovasc Res 78:130–138

    Article  CAS  PubMed  Google Scholar 

  • Tesfamariam B, Jakubowski JA, Cohen RA (1989) Contraction of diabetic rabbit aorta caused by endothelium-derived PGH2-TxA2. Am J Physiol 257:H1327–H1333

    CAS  PubMed  Google Scholar 

  • Tesfamariam B, Brown ML, Deykin D, Cohen RA (1990) Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J Clin Invest 85:929–932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tian X, Wong WT, Leung FP, Zhang Y, Wang YX, Lee HK, Ng CF, Chen ZY, Yao X, Au CL et al (2011) Oxidative stress-dependent cyclooxygenase-2-derived prostaglandin f2alpha impairs endothelial function in renovascular hypertensive rats. Antioxid Redox Signal 16:363–373

    Article  PubMed  Google Scholar 

  • van der Loo B, Labugger R, Skepper JN, Bachschmid M, Kilo J, Powell JM, Palacios-Callender M, Erusalimsky JD, Quaschning T, Malinski T et al (2000) Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 192:1731–1744

    Article  PubMed Central  PubMed  Google Scholar 

  • Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120

    Article  CAS  PubMed  Google Scholar 

  • Vanhoutte PM (2011) Endothelium-dependent contractions in hypertension: when prostacyclin becomes ugly. Hypertension 57:526–531

    Article  CAS  PubMed  Google Scholar 

  • Vanhoutte PM, Tang EH (2008) Endothelium-dependent contractions: when a good guy turns bad! J Physiol 586:5295–5304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vanhoutte PM, Feletou M, Taddei S (2005) Endothelium-dependent contractions in hypertension. Br J Pharmacol 144:449–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Virdis A, Ghiadoni L, Pinto S, Lombardo M, Petraglia F, Gennazzani A, Buralli S, Taddei S, Salvetti A (2000) Mechanisms responsible for endothelial dysfunction associated with acute estrogen deprivation in normotensive women. Circulation 101:2258–2263

    Article  CAS  PubMed  Google Scholar 

  • Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, Vekshtein VI, Selwyn AP, Ganz P (1990) Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 81:491–497

    Article  CAS  PubMed  Google Scholar 

  • Wang WJ, Lin CS, Wong CK (1986) Response of systemic amyloidosis to dimethyl sulfoxide. J Am Acad Dermatol 15:402–405

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Chabrashvili T, Wilcox CS (2004) Enhanced contractility of renal afferent arterioles from angiotensin-infused rabbits: roles of oxidative stress, thromboxane prostanoid receptors, and endothelium. Circ Res 94:1436–1442

    Article  CAS  PubMed  Google Scholar 

  • Wong SL, Leung FP, Lau CW, Au CL, Yung LM, Yao X, Chen ZY, Vanhoutte PM, Gollasch M, Huang Y (2009) Cyclooxygenase-2-derived prostaglandin F2alpha mediates endothelium-dependent contractions in the aortae of hamsters with increased impact during aging. Circ Res 104:228–235

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Feletou M, Boulanger CM, Wu HF, Levens N, Zhang JN, Vanhoutte PM (2002) Oxygen-derived free radicals mediate endothelium-dependent contractions to acetylcholine in aortas from spontaneously hypertensive rats. Br J Pharmacol 136:104–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang D, Feletou M, Levens N, Zhang JN, Vanhoutte PM (2003) A diffusible substance(s) mediates endothelium-dependent contractions in the aorta of SHR. Hypertension 41:143–148

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Gluais P, Zhang JN, Vanhoutte PM, Feletou M (2004) Endothelium-dependent contractions to acetylcholine, ATP and the calcium ionophore a 23187 in aortas from spontaneously hypertensive and normotensive rats. Fundam Clin Pharmacol 18:321–326

    Article  CAS  PubMed  Google Scholar 

  • Zeiher AM, Drexler H, Saurbier B, Just H (1993) Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 92:652–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao YJ, Wang J, Tod ML, Rubin LJ, Yuan XJ (1996) Pulmonary vasoconstrictor effects of prostacyclin in rats: potential role of thromboxane receptors. J Appl Physiol 81:2595–2603

    CAS  PubMed  Google Scholar 

  • Zhou MS, Nishida Y, Chen QH, Kosaka H (1999) Endothelium-derived contracting factor in carotid artery of hypertensive Dahl rats. Hypertension 34:39–43

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Y. S. is currently employed in Shanghai Key Laboratory of Organ Transplantation, ZhongShan Hospital, Fudan University. PMV’s research on EDCF is supported by the Research Grant Council of HK (Grant HKU777507M). All results reproduced in the figures were produced in the Department of Pharmacology and Pharmacy, University of Hong Kong, and were supported in part by Research Grants Council Grant HKU 7524 and by the Research Centre of Heart, Brain, Hormonal and Healthy Aging (HBHA) of the University of Hong Kong.

Disclosure

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Shi, Y., Vanhoutte, P.M. (2014). Reactive Oxygen Species and Endothelium-Derived Contracting Factor (EDCF) – Partners in Endothelial Dysfunction. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_74

Download citation

Publish with us

Policies and ethics