Skip to main content

Antioxidants Versus Reactive Oxygen Species – A Tug of War for Human Benefits?

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

The complex network of metabolic processes and reactions within the integrated system of aerobic life hinges largely on the presence of oxygen. Utilization of this highly reactive molecule in biological systems under normal metabolism and xenobiotic exposure inevitably results in the generation and accumulation of reactive oxygen species (ROS), which may lead to oxidative stress and hence damage to key molecular species. Oxidative damage has been implicated as the key factor in accelerated pathogenesis of a number of human diseases including cardiovascular, inflammatory, cancer, autoimmune, and neurodegenerative diseases. ROS also play defined functions through redox modifications of a great diversity of molecules, participating in a number of signaling pathways among other beneficial roles of its dual effect in the human metabolism. To maintain a steady balance between the toxicity of the oxidizing effects of ROS and the desired benefits, the elaborate antioxidant defense mechanism, which comprises endogenous and exogenous components, stages a constant reactive fight against excess ROS. However, the bioavailability of especially dietary antioxidants in sufficient concentrations within the human system is key to the success of this defensive war. An array of other physiological and physical variables and pharmacokinetic parameters such as absorption, distribution, and metabolism also contributes to the complex ultimate fate and effect of dietary antioxidants in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ader P, Wessmann A, Wolffram S (2000) Bioavailability and metabolism of the flavonols quercetin in the pig. Free Radic Biol Med 28:1056–1067

    Article  CAS  PubMed  Google Scholar 

  • Agarwal A, Saleh RA, Bedaiwy MA (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79:829–843

    Article  PubMed  Google Scholar 

  • Aitken RJ (1997) Molecular mechanisms regulating human sperm function. Mol Hum Reprod 3:169–173

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Clarkson JS, Fishel S (1989) Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod 40:183–197

    Article  Google Scholar 

  • Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499

    Article  CAS  PubMed  Google Scholar 

  • Bast A, Haenen GRMM (2002) The toxicity of antioxidants and their metabolites. Environ Toxicol Pharmacol 11:251–258

    Article  CAS  PubMed  Google Scholar 

  • Baydar NG, Ozkan G, Yasar S (2007) Evaluation of the antiradical and antioxidant potential of grape extracts. Food Control 18:1131–1136

    Article  Google Scholar 

  • Becker EM, Nissen LR, Skibsted LH (2004) Antioxidant evaluation protocols: food quality or health effects. Eur Food Res Technol 219:561–571

    Article  CAS  Google Scholar 

  • Benzie IFF (2003) Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol 136:113–126

    Article  PubMed  Google Scholar 

  • Burdon RH, Rice-Evans C (1989) Free radicals and the regulation of mammalian cell proliferation. Free Radic Res Commun 6:345–358

    Article  CAS  PubMed  Google Scholar 

  • Chun S-S, Vattem DA, Lin Y-T, Shetty K (2005) Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochem 40:809–816

    Article  CAS  Google Scholar 

  • Clement MV, Pervaiz S (1999) Reactive oxygen intermediates regulate cellular response to apoptotic stimuli. Free Radic Res 30:247–252

    Article  CAS  PubMed  Google Scholar 

  • Cook NC, Samman S (1996) Flavonoids – chemistry, metabolism, cardioprotective effects, and dietary sources. Nutr Biochem 7:66–76

    Article  CAS  Google Scholar 

  • Cortés-Jofré M, Rueda JR, Corsini-Muñoz G, Fonseca-Cortés C, Caraballoso M, Bonfill Cosp X (2012) Drugs for preventing lung cancer in healthy people. Cochrane Database Syst Rev 10:1–73

    Google Scholar 

  • Cosgrove JP, Church DF, Pryor WA (1987) The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22:299–304

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias L, Hernández-García D, Schnabel D, Salas-Vidal E, Castro-Obregón S (2008) Function of reactive oxygen species during animal development: passive or active? Dev Biol 320:1–11

    Article  CAS  PubMed  Google Scholar 

  • Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101

    Article  CAS  PubMed  Google Scholar 

  • de Lamirande E, Gagnon C (1995) Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod 10:15–21

    Article  CAS  PubMed  Google Scholar 

  • Furr HC, Clark RM (1997) Intestinal absorption and tissue distribution of carotenoids. J Nutr Biochem 8:364–377

    Article  CAS  Google Scholar 

  • Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to asses redox status: critical view and experimental data. Free Radic Biol Med 29:1106–1114

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez C, Sanz-Alfayate G, Agipato MT, Gonzalez-Niño A, Rocher A, Obeso A (2002) Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia. Respir Physiol Neurobiol 132:17–41

    Article  CAS  PubMed  Google Scholar 

  • Greenwald P, McDonald SS (1999) Antioxidants and the prevention of cancer. In: Basu TK, Temple NJ, Garg ML (eds) Antioxidants in human health and disease. CAB International, Wallingford

    Google Scholar 

  • Gutteridge JMC, Halliwell B (2010) Antioxidants: molecules, medicines and myths. Biochem Biophys Res Commun 393:561–564

    Article  CAS  PubMed  Google Scholar 

  • Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892

    Article  CAS  Google Scholar 

  • Halliwell B (1997) Antioxidants in human health and disease. Annu Rev Nutr 16:33–50

    Article  Google Scholar 

  • Halliwell B (2000) The antioxidant paradox. Lancet 355:1179–1180

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  PubMed  Google Scholar 

  • Hof KH, West CE, Weststrate JA, Hautvast JGAJ (2000) Dietary factors that affect the bioavailability of carotenoids. J Nutr 130:503–506

    Google Scholar 

  • Hollman PCH, van Trijp JMP, Buysman NCP, Gaag MS, Mengelers MJB, de Vries JHM, Katan MB (1997) Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett 418:152–156

    Article  CAS  PubMed  Google Scholar 

  • Huo Y, Qiu W-Y, Pan Q, Yao Y-F, Xing K, Lou MF (2009) Reactive oxygen species (ROS) are essential mediators in epidermal growth factor (EGF)-stimulated corneal epithelial cell proliferation, adhesion, migration, and wound healing. Exp Eye Res 89:876–886

    Article  CAS  PubMed  Google Scholar 

  • Ismail N, Alam M (2001) A novel cytotoxic flavonoid glycoside from Physalis angulata. Fitoterapia 72:676–679

    Article  CAS  PubMed  Google Scholar 

  • Jacob RA (1995) The integrated antioxidant system. Nutr Res 15:755–766

    Article  CAS  Google Scholar 

  • Kang SA, Gang YJ, Park M (1998) In vivo dual effects of vitamin C on paraquat-induced lung damage: dependence on released metals from the damaged tissue. Free Radic Res 28:93–107

    Article  CAS  PubMed  Google Scholar 

  • Koháryová M, Kolárová M (2008) Oxidative stress and thioredoxin system. Gen Physiol Biophys 27:71–84

    PubMed  Google Scholar 

  • Kranner I, Birtić S (2005) A modulating role for antioxidants in desiccation tolerance. Integr Comp Biol 45:734–740

    Article  CAS  PubMed  Google Scholar 

  • Lambeth JD (2000) Regulation of the phagocyte respiratory burst oxidase by protein interactions. J Biochem Mol Biol 33:427–439

    CAS  Google Scholar 

  • Lambeth JD, Kawahara T, Diebold B (2007) Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med 43:319–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambeth JD, Krause K-H, Clark RA (2008) NOX enzymes as novel targets for drug development. Semin Immunopathol 30:339–363

    Article  CAS  PubMed  Google Scholar 

  • Lander HM (1997) An essential role for free radicals and derived species in signal transduction. FASEB J 11:118–124

    CAS  PubMed  Google Scholar 

  • Lien EJ, Ren S, Bui H-H, Wang R (1999) Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic Biol Med 26:285–294

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Morand C, Demigné C, Texier O, Régérat F, Rémésy C (1997) Bioavailability of rutin and quercetin in rats. FEBS Lett 409:12–16

    Article  CAS  PubMed  Google Scholar 

  • Moure A, Cruz JM, Franco D, Domíngueza JM, Sineiro J, Domíngueza H, Nùñez MJ, Parajo JC (2001) Natural antioxidants from residual sources. Food Chem 72:145–171

    Article  CAS  Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064

    CAS  PubMed  Google Scholar 

  • Ndhlala AR, Moyo M, Van Staden J (2010) Natural antioxidants: fascinating or mythical biomolecules? Molecules 15:6905–6930

    Article  CAS  PubMed  Google Scholar 

  • Niki E (2010) Assessment of antioxidant capacity in vitro and in vivo. Free Radic Biol Med 49:503–515

    Article  CAS  PubMed  Google Scholar 

  • Pelicano H, Carney D, Huanga P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110

    Article  CAS  PubMed  Google Scholar 

  • Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 27:1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MNV (2006) Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Control Release 113:189–207

    Article  CAS  PubMed  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox state of the cell as viewed through the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Hong-Fang J, Hong-Yu Z (2007) How to understand the dichotomy of antioxidants. Biochem Biophys Res Commun 362:543–545

    Article  CAS  PubMed  Google Scholar 

  • Stahl W, van den Berg H, Authur J, Bast A, Dainty J, Faulks RM, Gärtner C, Haenen G, Hollman P, Holst B, Kelly FJ, Polidori MC, Rice-Evans C, Southon S, van Vliet T, Viña-Ribes J, Williamson G, Astley SB (2002) Bioavailability and metabolism. Mol Aspects Med 23:39–100

    Article  CAS  PubMed  Google Scholar 

  • Steinberg D (1986) Studies on the mechanism of action of probucol. Am J Cardiol 57:16H–21H

    Article  CAS  PubMed  Google Scholar 

  • Sun JZ, Tang XL, Park SW, Qiu Y, Turrens JF, Bolli R (1996) Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J Clin Invest 97:562–576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tahara EB, Navarete FDT, Kowaltowski AJ (2009) Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 46:1283–1297

    Article  CAS  PubMed  Google Scholar 

  • Teel RW, Martin RM (1988) Disposition of the plant phenol ellagic acid in the mouse following oral administration by gavage. Xenobiotica 18:295–883

    Article  Google Scholar 

  • Tubaro F, Ghiselli A, Rapuzzi P, Maiorino M, Ursini F (1998) Analysis of plasma antioxidant capacity by competition kinetics. Free Radic Biol Med 24:1228–1234

    Article  CAS  PubMed  Google Scholar 

  • Ueda S, Nakamura H, Masutani H, Sasada T, Takabayashi A, Yamaoka Y, Yodoi J (2002) Baicalin induces apoptosis via mitochondrial pathway as prooxidant. Mol Immunol 38:781–791

    Article  CAS  PubMed  Google Scholar 

  • Ulker S, McMaster D, McKeown PP, Bayraktutan U (2003) Impaired activities of antioxidant enzymes elicit endothelial dysfunction in spontaneous hypertensive rats despite enhanced vascular nitric oxide generation. Cardiovasc Res 59:488–500

    Article  CAS  PubMed  Google Scholar 

  • Vurusaner B, Poli G, Basaga H (2011) Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med 52(1):7–18. doi:10.1016/j.freeradbiomed.2011.09.035

    Article  PubMed  Google Scholar 

  • Watson J (2013) Oxidants, antioxidants and current incurability of metastatic cancers. Open Biol 3:120144

    Article  PubMed Central  PubMed  Google Scholar 

  • Wootton-Beard PC, Ryan L (2011) Improving public health?: the role of antioxidant-rich fruit and vegetable beverages. Food Res Int. doi:10.1016/j.foodres.2011.09.015

    Google Scholar 

  • Yamashita N, Tanemura H, Kawanishi S (1999) Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II). Mutat Res 425:107–115

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Ji W-J, Zhu Y, He B, Li H, Huang T-G, Li Y-M (2007) Enhancement of endogenous defenses against ROS by supra-nutritional level of selenium is more safe and effective than antioxidant supplementation in reducing hypertensive target organ damage. Med Hypotheses 68:952–956

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was made possible by a fellowship from the Claude Leon Foundation to ARN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes van Staden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ndhlala, A.R., Ncube, B., van Staden, J. (2014). Antioxidants Versus Reactive Oxygen Species – A Tug of War for Human Benefits?. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_181

Download citation

Publish with us

Policies and ethics