Skip to main content

Regular Exercise Results in Systemic Adaptation Against Oxidative Stress

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Exercise is associated with increased metabolic demand, which results in an increased formation of reactive oxygen species (ROS). However, regular exercise appears to decrease the incidence of a wide range of ROS-associated diseases, especially those related to lifestyle, such as cardiovascular diseases and type II diabetes, and also age related conditions such as Alzheimer’s diseases and some kind of cancers. The preventive effect of regular exercise, at least in part, is due to oxidative stress-induced adaptation. The oxidative challenge-related adaptive process of exercise is probably not just dependent upon the levels of ROS but primarily on the increase in antioxidant and housekeeping enzyme activities related to oxidative damage repair enzymes. Therefore, the effects of exercise resemble the characteristics of hormesis. In addition, it appears that oxidative challenge-related effects of exercise are systemic. Skeletal muscle, liver, and brain have different metabolic rates and functions during exercise, but the adaptive response is very similar: increased antioxidant/damage repair enzyme activity, lower oxidative damage, and increased resistance to oxidative stress, due to changes in redox homeostasis. Hence, it is likely that the beneficial effects of exercise are due to the ability of exercise to produce increased levels of ROS. A sedentary life, which systemically decreases the body’s capability to withstand oxidative challenge, increases the vulnerability to numerous physiological and environmental perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlard PA, Cotman CW (2004) Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience 124:985–992

    Article  CAS  PubMed  Google Scholar 

  • Adlard PA, Perreau VM, Pop V, Cotman CW (2005) Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci 25:4217–4221

    Article  CAS  PubMed  Google Scholar 

  • Alessio HM, Goldfarb AH (1988) Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training. J Appl Physiol 64:1333–1336

    CAS  PubMed  Google Scholar 

  • Andrade FH, Reid MB, Westerblad H (2001) Contractile response of skeletal muscle to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox-modulation.FASEB J 15:309–311

    CAS  PubMed  Google Scholar 

  • Bejma J, Ji LL (1999) Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 87:465–470

    CAS  PubMed  Google Scholar 

  • Benoit V, Hellin AC, Huygen S, Gielen J, Bours V, Merville MP (2000) Additive effect between NF-kappaB subunits and p53 protein for transcriptional activation of human p53 promoter. Oncogene 19:4787–4794

    Article  CAS  PubMed  Google Scholar 

  • Berchtold NC, Chinn G, Chou M, Kesslak JP, Cotman CW (2005) Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience 133:853–861

    Article  CAS  PubMed  Google Scholar 

  • Blair SN, Kampert JB, Kohl HW 3rd, Barlow CE, Macera CA, Paffenbarger RS Jr, Gibbons LW (1996) Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 276:205–210

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2004) Hormesis: a revolution in toxicology, risk assessment and medicine. EMBO Rep 5:S37–S40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003) Toxicology rethinks its central belief. Nature 421:691–692

    Article  CAS  PubMed  Google Scholar 

  • Canton M, Neverova I, Menabo R, Van Eyk J, Di Lisa F (2004) Evidence of myofibrillar protein oxidation induced by postischemic reperfusion in isolated rat hearts. Am J Physiol Heart Circ Physiol 286:H870–H877

    Article  CAS  PubMed  Google Scholar 

  • Capri M, Salvioli S, Sevini F, Valensin S, Celani L, Monti D, Pawelec G, De Benedictis G, Gonos ES, Franceschi C (2006) The genetics of human longevity. Ann N Y Acad Sci 1067:252–263

    Article  CAS  PubMed  Google Scholar 

  • Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS, Wu JF, Floyd RA (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci USA 88:3633–3636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coskun S, Gonul B, Guzel NA, Balabanli B (2005) The effects of vitamin C supplementation on oxidative stress and antioxidant content in the brains of chronically exercised rats. Mol Cell Biochem 280:135–138

    Article  CAS  PubMed  Google Scholar 

  • Cotman CW, Engesser-Cesar C (2002) Exercise enhances and protects brain function. Exerc Sport Sci Rev 30:75–79

    Article  PubMed  Google Scholar 

  • Das N, Levine RL, Orr WC, Sohal RS (2001) Selectivity of protein oxidative damage during aging in drosophila melanogaster. Biochem J 360:209–216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Devi SA, Kiran TR (2004) Regional responses in antioxidant system to exercise training and dietary vitamin E in aging rat brain. Neurobiol Aging 25:501–508

    Article  CAS  PubMed  Google Scholar 

  • Divald A, Powell SR (2006) Proteasome mediates removal of proteins oxidized during myocardial ischemia. Free Radic Biol Med 40:156–164

    Article  CAS  PubMed  Google Scholar 

  • Dobson GP, Himmelreich U (2002) Heart design: free ADP scales with absolute mitochondrial and myofibrillar volumes from mouse to human. Biochim Biophys Acta 1553:261–267

    Article  CAS  PubMed  Google Scholar 

  • Elia M (1991) Energy expenditure in the whole body. In: Kinney JM, Tucker HN (eds) Energy metabolism. Raven, New York, pp 19–59

    Google Scholar 

  • Engesser-Cesar C, Anderson AJ, Basso DM, Edgerton VR, Cotman CW (2005) Voluntary wheel running improves recovery from a moderate spinal cord injury. J Neurotrauma 22:157–171

    Article  PubMed  Google Scholar 

  • Feasson L, Stockholm D, Freyssenet D, Richard I, Duguez S, Beckmann JS, Denis C (2002) Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. J Physiol 543:297–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS (1996) Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci USA 93:4765–4769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gomez-Cabrera MC, Borras C, Pallardo FV, Sastre J, Ji LL, Vina J (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567:113–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grune T (2000) Oxidative stress, aging and the proteasomal system. Biogerontology 1:31–40

    Article  CAS  PubMed  Google Scholar 

  • Grune T, Reinheckel T, Davies KJ (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11:526–534

    CAS  PubMed  Google Scholar 

  • Grune T, Merker K, Jung T, Sitte N, Davies KJ (2005) Protein oxidation and degradation during postmitotic senescence. Free Radic Biol Med 39:1208–1215

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Agrawal A, Agrawal S, Su H, Gollapudi S (2006) A paradox of immunodeficiency and inflammation in human aging: lessons learned from apoptosis. Immun Ageing 3:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Harman D (2006) Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci 1067:10–21

    Article  CAS  PubMed  Google Scholar 

  • Huang TT, D’Andrea AD (2006) Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 7:323–334

    Article  CAS  PubMed  Google Scholar 

  • Iemitsu M, Maeda S, Jesmin S, Otsuki T, Kasuya Y, Miyauchi T (2006) Activation pattern of MAPK signaling in the hearts of trained and untrained rats following a single bout of exercise. J Appl Physiol 101:151–163

    Article  CAS  PubMed  Google Scholar 

  • Ji LL, Gomez-Cabrera MC, Steinhafel N, Vina J (2004) Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. FASEB J 18:1499–1506

    Article  CAS  PubMed  Google Scholar 

  • Kaiser J (2003) Hormesis. A healthful dab of radiation? Science 302:378

    Article  CAS  PubMed  Google Scholar 

  • Katzmarzyk PT, Janssen I (2004) The economic costs associated with physical inactivity and obesity in Canada: an update. Can J Appl Physiol 29:90–115

    Article  PubMed  Google Scholar 

  • Kiens B (2006) Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 86:205–243

    Article  CAS  PubMed  Google Scholar 

  • Kjaer M, Magnusson P, Krogsgaard M, Boysen Moller J, Olesen J, Heinemeier K, Hansen M, Haraldsson B, Koskinen S, Esmarck B, Langberg H (2006) Extracellular matrix adaptation of tendon and skeletal muscle to exercise. J Anat 208:445–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koltai E, Zhao Z, Lacza Z, Cselenyak A, Vacz G, Nyakas C, Boldogh I, Ichinoseki-Sekine N, Radak Z (2011) Combined exercise and insulin-like growth factor-1 supplementation induces neurogenesis in old rats, but do not attenuate age-associated DNA damage. Rejuvenation Res 14:585–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces abeta levels and amyloid deposition in transgenic mice. Cell 120:701–713

    Article  CAS  PubMed  Google Scholar 

  • Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796

    Article  CAS  PubMed  Google Scholar 

  • Levine RL, Stadtman ER (2001) Oxidative modification of proteins during aging. Exp Gerontol 36:1495–1502

    Article  CAS  PubMed  Google Scholar 

  • Lindahl T, Prigent C, Barnes DE, Lehmann AR, Satoh MS, Roberts E, Nash RA, Robins P, Daly G (1993) DNA joining in mammalian cells. Cold Spring Harb Symp Quant Biol 58:619–624

    Article  CAS  PubMed  Google Scholar 

  • Marton O, Koltai E, Nyakas C, Bakonyi T, Zenteno-Savin T, Kumagai S, Goto S, Radak Z (2010) Aging and exercise affect the level of protein acetylation and SIRT1 activity in cerebellum of male rats. Biogerontology 11:679–686

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7:278–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mattson MP, Maudsley S, Martin B (2004) A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin. Ageing Res Rev 3:445–464

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto H, Kaneko T, Tahara S, Hayashi E, Naito H, Radak Z, Goto S (2007) Regular exercise reduces 8-oxodG in the nuclear and mitochondrial DNA and modulates the DNA repair activity in the liver of old rats. Exp Gerontol 42:287–295

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Gomez C, Lopez-Cepero JM, Boveris A (2004) Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 286:R505–R511

    Article  CAS  PubMed  Google Scholar 

  • Ogonovszky H, Berkes I, Kumagai S, Kaneko T, Tahara S, Goto S, Radak Z (2005a) The effects of moderate-, strenuous- and over-training on oxidative stress markers, DNA repair, and memory, in rat brain. Neurochem Int 46:635–640

    Article  CAS  PubMed  Google Scholar 

  • Ogonovszky H, Sasvari M, Dosek A, Berkes I, Kaneko T, Tahara S, Nakamoto H, Goto S, Radak Z (2005b) The effects of moderate, strenuous, and overtraining on oxidative stress markers and DNA repair in rat liver. Can J Appl Physiol 30:186–195

    Article  CAS  PubMed  Google Scholar 

  • Olson AK, Eadie BD, Ernst C, Christie BR (2006) Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 16:250–260

    Article  CAS  PubMed  Google Scholar 

  • Ozkaya YG, Agar A, Yargicoglu P, Hacioglu G, Bilmen-Sarikcioglu S, Ozen I, Aliciguzel Y (2002) The effect of exercise on brain antioxidant status of diabetic rats. Diabetes Metab 28:377–384

    CAS  PubMed  Google Scholar 

  • Pani G, Colavitti R, Bedogni B, Anzevino R, Borrello S, Galeotti T (2000) A redox signaling mechanism for density-dependent inhibition of cell growth. J Biol Chem 275:38891–38899

    Article  CAS  PubMed  Google Scholar 

  • Radak Z (ed) (2005) Exercise and diseases. Aachen, Meyer and Meyer Verlag

    Google Scholar 

  • Radak Z, Boldogh I (2010) 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress. Free Radic Biol Med 49:587–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radak Z, Asano K, Inoue M, Kizaki T, Oh-Ishi S, Suzuki K, Taniguchi N, Ohno H (1995a) Acute bout of exercise does not alter the antioxidant enzyme status and lipid peroxidation in rat hippocampus and cerebellum. Pathophysiology 2:243–245

    Article  CAS  Google Scholar 

  • Radak Z, Asano K, Inoue M, Kizaki T, Oh-Ishi S, Suzuki K, Taniguchi N, Ohno H (1995b) Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise. J Appl Physiol 79:129–135

    CAS  PubMed  Google Scholar 

  • Radak Z, Asano K, Inoue M, Kizaki T, Oh-Ishi S, Suzuki K, Taniguchi N, Ohno H (1996) Superoxide dismutase derivative prevents oxidative damage in liver and kidney of rats induced by exhausting exercise. Eur J Appl Physiol Occup Physiol 72:189–194

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Asano K, Lee KC, Ohno H, Nakamura A, Nakamoto H, Goto S (1997) High altitude training increases reactive carbonyl derivatives but not lipid peroxidation in skeletal muscle of rats. Free Radic Biol Med 22:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Kaneko T, Tahara S, Nakamoto H, Ohno H, Sasvari M, Nyakas C, Goto S (1999a) The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomes. Free Radic Biol Med 27:69–74

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Pucsok J, Mecseki S, Csont T, Ferdinandy P (1999b) Muscle soreness-induced reduction in force generation is accompanied by increased nitric oxide content and DNA damage in human skeletal muscle. Free Radic Biol Med 26:1059–1063

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Sasvari M, Nyakas C, Pucsok J, Nakamoto H, Goto S (2000a) Exercise preconditioning against hydrogen peroxide-induced oxidative damage in proteins of rat myocardium. Arch Biochem Biophys 376:248–251

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Sasvari M, Nyakas C, Taylor AW, Ohno H, Nakamoto H, Goto S (2000b) Regular training modulates the accumulation of reactive carbonyl derivatives in mitochondrial and cytosolic fractions of rat skeletal muscle. Arch Biochem Biophys 383:114–118

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Kaneko T, Tahara S, Nakamoto H, Pucsok J, Sasvari M, Nyakas C, Goto S (2001a) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38:17–23

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Sasvari M, Nyakas C, Kaneko T, Tahara S, Ohno H, Goto S (2001b) Single bout of exercise eliminates the immobilization-induced oxidative stress in rat brain. Neurochem Int 39:33–38

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Taylor AW, Ohno H, Goto S (2001c) Adaptation to exercise-induced oxidative stress: from muscle to brain. Exerc Immunol Rev 7:90–107

    CAS  PubMed  Google Scholar 

  • Radak Z, Apor P, Pucsok J, Berkes I, Ogonovszky H, Pavlik G, Nakamoto H, Goto S (2003) Marathon running alters the DNA base excision repair in human skeletal muscle. Life Sci 72:1627–1633

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Chung HY, Naito H, Takahashi R, Jung KJ, Kim HJ, Goto S (2004) Age-associated increase in oxidative stress and nuclear factor kappaB activation are attenuated in rat liver by regular exercise. FASEB J 18:749–750

    CAS  PubMed  Google Scholar 

  • Radak Z, Chung HY, Goto S (2005) Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology 6:71–75

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Toldy A, Szabo Z, Siamilis S, Nyakas C, Silye G, Jakus J, Goto S (2006) The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain. Neurochem Int 49:387–392

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Atalay M, Jakus J, Boldogh I, Davies K, Goto S (2009) Exercise improves import of 8-oxoguanine DNA glycosylase into the mitochondrial matrix of skeletal muscle and enhances the relative activity. Free Radic Biol Med 46:238–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radak Z, Bori Z, Koltai E, Fatouros IG, Jamurtas AZ, Douroudos II, Terzis G, Nikolaidis MG, Chatzinikolaou A, Sovatzidis A, Kumagai S, Naito H, Boldogh I (2011) Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are modulated by adaptive responses to physical exercise in human skeletal muscle. Free Radic Biol Med 51:417–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rechsteiner M, Hill CP (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15:27–33

    Article  CAS  PubMed  Google Scholar 

  • Reid MB, Haack KE, Franchek KM, Valberg PA, Kobzik L, West MS (1992) Reactive oxygen in skeletal muscle I. Intracellular oxidant kinetics and fatigue in vitro. J Appl Physiol 73:1797–1804

    CAS  PubMed  Google Scholar 

  • Reid MB, Khawli FA, Moody MR (1993) Reactive oxygen in skeletal muscle III. Contractility of unfatigued muscle. J Appl Physiol 75:1081–1087

    CAS  PubMed  Google Scholar 

  • Rennie MJ, Bohe J, Smith K, Wackerhage H, Greenhaff P (2006) Branched-chain amino acids as fuels and anabolic signals in human muscle. J Nutr 136:264S–268S

    CAS  PubMed  Google Scholar 

  • Richter C (1988) Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett 241:1–5

    Article  CAS  PubMed  Google Scholar 

  • Sagan LA (1989) On radiation, paradigms, and hormesis. Science 245(574):621

    Google Scholar 

  • Sahlin K, Tonkonogi M, Soderlund K (1998) Energy supply and muscle fatigue in humans. Acta Physiol Scand 162:261–266

    Article  CAS  PubMed  Google Scholar 

  • Shringarpure R, Grune T, Davies KJ (2001) Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell Mol Life Sci 58:1442–1450

    Article  CAS  PubMed  Google Scholar 

  • Shringarpure R, Grune T, Mehlhase J, Davies KJ (2003) Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 278:311–318

    Article  CAS  PubMed  Google Scholar 

  • Siamilis S, Jakus J, Nyakas C, Costa A, Mihalik B, Falus A, Radak Z (2009) The effect of exercise and oxidant-antioxidant intervention on the levels of neurotrophins and free radicals in spinal cord of rats. Spinal Cord 47:453–457

    Article  CAS  PubMed  Google Scholar 

  • Sitte N, Merker K, Grune T (1998) Proteasome-dependent degradation of oxidized proteins in MRC-5 fibroblasts. FEBS Lett 440:399–402

    Article  CAS  PubMed  Google Scholar 

  • Solaini G, Harris DA (2005) Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. Biochem J 390:377–394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Somani SM, Husain K (1996) Exercise training alters kinetics of antioxidant enzymes in rat tissues. Biochem Mol Biol Int 38:587–595

    CAS  PubMed  Google Scholar 

  • Stadtman ER (2004) Role of oxidant species in aging. Curr Med Chem 11:1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899:191–208

    Article  CAS  PubMed  Google Scholar 

  • Szabo Z, Ying Z, Radak Z, Gomez-Pinilla F (2010) Voluntary exercise may engage proteasome function to benefit the brain after trauma. Brain Res 1341:25–31

    Article  CAS  PubMed  Google Scholar 

  • Tanskanen M, Atalay M, Uusitalo A (2010) Altered oxidative stress in overtrained athletes. J Sports Sci 28:309–317

    Article  PubMed  Google Scholar 

  • Toldy A, Stadler K, Sasvari M, Jakus J, Jung KJ, Chung HY, Berkes I, Nyakas C, Radak Z (2005) The effect of exercise and nettle supplementation on oxidative stress markers in the rat brain. Brain Res Bull 65:487–493

    Article  CAS  PubMed  Google Scholar 

  • Toldy A, Atalay M, Stadler K, Sasvari M, Jakus J, Jung KJ, Chung HY, Nyakas C, Radak Z (2009) The beneficial effects of nettle supplementation and exercise on brain lesion and memory in rat. J Nutr Biochem 20:974–981

    Article  CAS  PubMed  Google Scholar 

  • Tremblay MS, Shephard RJ, Brawley LR, Cameron C, Craig CL, Duggan M, Esliger DW, Hearst W, Hicks A, Janssen I, Katzmarzyk PT, Latimer AE, Ginis KA, McGuire A, Paterson DH, Sharratt M, Spence JC, Timmons B, Warburton D, Young TK, Zehr L (2007) Physical activity guidelines and guides for Canadians: facts and future. Can J Public Health 98(Suppl 2):S218–S224

    PubMed  Google Scholar 

  • Ushio-Fukai M, Alexander RW (2004) Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem 264:85–97

    Article  CAS  PubMed  Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999a) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96:13427–13431

    Article  PubMed Central  PubMed  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999b) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  PubMed  Google Scholar 

  • Vasilaki A, McArdle F, Iwanejko LM, McArdle A (2006) Adaptive responses of mouse skeletal muscle to contractile activity: the effect of age. Mech Ageing Dev 127:830–839

    Article  CAS  PubMed  Google Scholar 

  • Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by Hungarian Science Research Found (OTKA) and Health Science Grant (ETT) to Z.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Radak Ph.D., D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Radak, Z., Hart, N., Marton, O., Koltai, E. (2014). Regular Exercise Results in Systemic Adaptation Against Oxidative Stress. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_166

Download citation

Publish with us

Policies and ethics