Skip to main content
Log in

Aging and exercise affect the level of protein acetylation and SIRT1 activity in cerebellum of male rats

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Aging is associated with a gradual decline in cognitive and motor functions, the result of complex biochemical processes including pre- and posttranslational modifications of proteins. Sirtuins are NAD+ dependent protein deacetylases. These enzymes modulate the aging process by lysine deacetylation, which alters the activity and stability of proteins. Exercise can increase mean life-span and improve quality of life. Data from our laboratories revealed that 4 weeks of treadmill running improves performance in the Morris Maze test for young (4 months, old) but not old (30 months, old) male rats, and the exercise could not prevent the age-associated loss in muscle strength assessed by a gripping test. The positive correlation between protein acetylation and the gripping test suggests that the age-dependent decrease in relative activity of SIRT1 in the cerebellum impairs motor function. Similarly to the acetylation level of total proteins, the acetylation of ά -tubulin is also increased with aging, while the effect of exercise training was not found to be significant. Moreover, the protein content of nicotinamide phosphoribosyltransferase, one of the key enzymes of NAD biosynthesis, decreased in the young exercise group. These data suggest that aging results in decreased specific activity of SIRT1 in cerebellum, which could lead to increased acetylation of protein residues, including ά-tubulin, that interfere with motor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adlard PA, Perreau VM, Pop V, Cotman CW (2005) Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci 25:4217–4221

    Article  CAS  PubMed  Google Scholar 

  • Albeck DS, Sano K, Prewitt GE, Dalton L (2006) Mild forced treadmill exercise enhances spatial learning in the aged rat. Behav Brain Res 168:345–348

    Article  PubMed  Google Scholar 

  • Boukhtouche F, Doulazmi M, Frederic F, Dusart I, Brugg B, Mariani J (2006) RORalpha, a pivotal nuclear receptor for Purkinje neuron survival and differentiation: from development to ageing. Cerebellum 5:97–104

    Article  CAS  PubMed  Google Scholar 

  • Butler D, Bendiske J, Michaelis ML, Karanian DA, Bahr BA (2007) Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. Eur J Pharmacol 562:20–27

    Article  CAS  PubMed  Google Scholar 

  • Canto C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105

    Article  CAS  PubMed  Google Scholar 

  • Costford SR, Bajpeyi S, Pasarica M, Albarado DC, Thomas SC, Xie H et al (2009) Skeletal muscle NAMPT is induced by exercise in humans. Am J Physiol Endocrinol Metab 298:117–126

    Article  Google Scholar 

  • Csiszar A, Labinskyy N, Jimenez R, Pinto JT, Ballabh P, Losonczy G et al (2009a) Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1. Mech Ageing Dev 130:518–527

    Article  CAS  PubMed  Google Scholar 

  • Csiszar A, Labinskyy N, Pinto JT, Ballabh P, Zhang H, Losonczy G et al (2009b) Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 297:H13–H20

    Article  CAS  PubMed  Google Scholar 

  • Danz ED, Skramsted J, Henry N, Bennett JA, Keller RS (2009) Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radic Biol Med 46:1589–1597

    Article  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  • Droge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6:361–370

    Article  CAS  PubMed  Google Scholar 

  • Feige JN, Auwerx J (2008) Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr Opin Cell Biol 20:303–309

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Pinilla F, So V, Kesslak JP (1998) Spatial learning and physical activity contribute to the induction of fibroblast growth factor: neural substrates for increased cognition associated with exercise. Neuroscience 85:53–61

    Article  CAS  PubMed  Google Scholar 

  • Goto S (2009) Aging theories and anti-aging: an overview. Nippon Ronen Igakkai Zasshi 46:218–221

    Article  PubMed  Google Scholar 

  • Griesbach GS, Hovda DA, Gomez-Pinilla F (2009) Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res 1288:105–115

    Article  CAS  PubMed  Google Scholar 

  • Guarente L (2007) Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 72:483–488

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1969) Prolongation of life: role of free radical reactions in aging. J Am Geriatr Soc 17:721–735

    CAS  PubMed  Google Scholar 

  • Harman D (1998) Aging: phenomena and theories. Ann NY Acad Sci 854:1–7

    Article  CAS  PubMed  Google Scholar 

  • Haus JM, Solomon TP, Marchetti CM, O’Leary VB, Brooks LM, Gonzalez F et al (2009) Decreased visfatin after exercise training correlates with improved glucose tolerance. Med Sci Sports Exerc 41:1255–1260

    Article  CAS  PubMed  Google Scholar 

  • Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    Article  PubMed  Google Scholar 

  • Iwanaga T, Ohtsuka H, Adachi I, Fujita T (1991) GRP (gastrin-releasing peptide)-containing nerves in the rat stomach and stress-induced depletion of their synaptic vesicles. An electron microscope study. Arch Histol Cytol 54:573–580

    Article  CAS  PubMed  Google Scholar 

  • Jeong SJ, Kim K, Suh YH (1997) Age-related changes in the expression of Alzheimer’s beta APP in the brain of senescence accelerated mouse (SAM)-P/10. Neuroreport 8:1733–1737

    Article  CAS  PubMed  Google Scholar 

  • Jonas MC, Costantini C, Puglielli L (2008) PCSK9 is required for the disposal of non-acetylated intermediates of the nascent membrane protein BACE1. EMBO Rep 9:916–922

    Article  CAS  PubMed  Google Scholar 

  • Jung-Hynes B, Ahmad N (2009) SIRT1 controls circadian clock circuitry and promotes cell survival: a connection with age-related neoplasms. FASEB J 23:2803–2809

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M (2008) The ongoing saga of sirtuins and aging. Cell Metab 8:4–5

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Um SJ (2008) SIRT1: roles in aging and cancer. BMB Rep 41:751–756

    CAS  PubMed  Google Scholar 

  • Knutson MD, Leeuwenburgh C (2008) Resveratrol and novel potent activators of SIRT1: effects on aging and age-related diseases. Nutr Rev 66:591–596

    Article  PubMed  Google Scholar 

  • Koltai E, Szabo Z, Atalay M, Boldogh I, Naito H, Goto S, Nyakas C, Radak Z (2009) Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev 131(1):21–28

    Article  PubMed  Google Scholar 

  • Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki S, Isshiki K et al (2007) SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J Biol Chem 282:151–158

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhang B, Tang J, Cao Q, Wu Y, Wu C et al (2007) Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin. J Neurosci 27:2606–2616

    Article  PubMed  Google Scholar 

  • Libert S, Cohen D, Guarente L (2008) Neurogenesis directed by Sirt1. Nat Cell Biol 10:373–374

    Article  CAS  PubMed  Google Scholar 

  • Ljubuncic P, Reznick AZ (2009) The evolutionary theories of aging revisited—a mini-review. Gerontology 55:205–216

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP (2003) Methylation and acetylation in nervous system development and neurodegenerative disorders. Ageing Res Rev 2:329–342

    Article  CAS  PubMed  Google Scholar 

  • Molteni R, Wu A, Vaynman S, Ying Z, Barnard RJ, Gomez-Pinilla F (2004) Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience 123:429–440

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Lomb DJ, Haigis MC, Guarente L (2009) SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137:560–570

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Kaneko T, Tahara S, Nakamoto H, Pucsok J, Sasvari M et al (2001a) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38:17–23

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Taylor AW, Ohno H, Goto S (2001b) Adaptation to exercise-induced oxidative stress: from muscle to brain. Exerc Immunol Rev 7:90–107

    CAS  PubMed  Google Scholar 

  • Radak Z, Chung HY, Goto S (2008) Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med 44:153–159

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo J, Fernandez AP, Serrano J, Peinado MA, Martinez A (2005) The role of free radicals in cerebral hypoxia and ischemia. Free Radic Biol Med 39:26–50

    Article  CAS  PubMed  Google Scholar 

  • Rossi F, Gianola S, Corvetti L (2006) The strange case of Purkinje axon regeneration and plasticity. Cerebellum 5:174–182

    Article  PubMed  Google Scholar 

  • Sadoul K, Boyault C, Pabion M, Khochbin S (2008) Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie 90:306–312

    Article  CAS  PubMed  Google Scholar 

  • Simms-Waldrip T, Rodriguez-Gonzalez A, Lin T, Ikeda AK, Fu C, Sakamoto KM (2008) The aggresome pathway as a target for therapy in hematologic malignancies. Mol Genet Metab 94:283–286

    Article  CAS  PubMed  Google Scholar 

  • Szentagothai J (1971) Structure-function relationships in inhibitory synapses. Adv Cytopharmacol 1:401–417

    CAS  PubMed  Google Scholar 

  • Yang SI, Park HY, Lee SH, Lee SJ, Han OY, Lim SC et al (2004) Transdermal eperisone elicits more potent and longer-lasting muscle relaxation than oral eperisone. Pharmacology 71:150–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the fruitful consultation with Professor Albert W Taylor. The present work was supported by Hungarian grants: OTKA K75702, TéT JAP13/02, ETT awarded to Z. Radák.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Radak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marton, O., Koltai, E., Nyakas, C. et al. Aging and exercise affect the level of protein acetylation and SIRT1 activity in cerebellum of male rats. Biogerontology 11, 679–686 (2010). https://doi.org/10.1007/s10522-010-9279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-010-9279-2

Keywords

Navigation