Skip to main content

Antithetical Roles of Reactive Oxygen Species in Mammalian Reproduction

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Reproduction involves complex processes that maintains survival by introducing genetic diversity into the population and also provides the potential for evolution. Various environmental conditions, such as hormone imbalance and inflammation, influence reproductive ability during gonogenesis, fertilization, and embryogenesis in mammals. Oxidative stress caused by elevated reactive oxygen species (ROS) affects these processes and is one of the predominant causes of both male and female infertility. It is particularly important to minimize oxidative stress when in vitro fertilization (IVF) is performed for the purpose of assisted reproduction. Assisted reproductive technology (ART) has advanced dramatically, and hence the success rate has increased. Accordingly, the problems associated with ART are becoming evident, and the time to clarify its mechanisms and cope with them is now upon us. In addition to oxidative damage, the beneficial roles of ROS, such as intracellular signaling, have become evident. The antithetical functions of ROS make it more difficult to resolve and overcome the problems caused by oxidative stress. While many processes are common to both somatic cells and gametes, and the established mechanism in lower vertebrates is mostly applicable to mammals, there are also processes that are unique to mammalian reproduction. Despite the difficulty in understanding mammalian reproduction, the mechanisms and problems can be gradually unveiled by advanced technology such as genetic modification of animals and high-throughput analyses of biological molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ART:

Assisted reproductive technology

COX2:

Cyclooxygenase 2

Cys-SH:

Cysteine sulfhydryl

Cys-SOH:

Cysteine sulfenic acid

GPX:

Glutathione peroxidase

GSH:

Reduced form of glutathione

hCG:

Human chorionic gonadotropin

IL:

Interleukin

IVF:

In vitro fertilization

LH:

Luteinizing hormone

MAPK:

Mitogen-activated protein kinase

MPF:

M-phase-promoting factor

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PDI:

Protein disulfide isomerase

Prx:

Peroxiredoxin

PTP:

Phosphotyrosine phosphatases

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TKR:

Tyrosine kinase-type receptors

TNF:

Tumor necrosis factor

References

  • Agarwal A, Gupta S, Sekhon L, Shah R (2008a) Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal 10:1375–1403

    Article  CAS  PubMed  Google Scholar 

  • Agarwal A, Makker K, Sharma R (2008b) Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 59:2–11

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Baker MA (2006) Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol 250:66–69

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, De Iuliis GN (2010) On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod 16:3–13

    Article  CAS  PubMed  Google Scholar 

  • Andrabi SM (2007) Mammalian sperm chromatin structure and assessment of DNA fragmentation. J Assist Reprod Genet 4:61–69

    Google Scholar 

  • Bavister BD, Squirrell JM (2000) Mitochondrial distribution and function in oocytes and early embryos. Hum Reprod 15(suppl 2):189–198

    Article  PubMed  Google Scholar 

  • Bertolotti M, Yim SH, Masciarelli S, Kim YJ, Garcia-Manteiga JM, Vene’ R, Iuchi Y, Kang MH, Fujii J, Rubartelli A, Rhee SG, Sitia R (2010) B to plasma cell terminal differentiation entails oxidative stress and profound reshaping of the antioxidant responses. Antioxid Redox Signal 13:1133–1144

    Article  CAS  PubMed  Google Scholar 

  • Betts DH, Madan P (2008) Permanent embryo arrest: molecular and cellular concepts. Mol Hum Reprod 14:445–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bivalacqua TJ, Usta MF, Kendirci M, Pradhan L, Alvarez X, Champion HC, Kadowitz PJ, Hellstrom WJ (2005) Superoxide anion production in the rat penis impairs erectile function in diabetes: influence of in vivo extracellular superoxide dismutase gene therapy. J Sex Med 2:187–197

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Hempstock J, Jauniaux E (2003) Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod Biomed Online 6:84–96

    Article  PubMed  Google Scholar 

  • Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, Garrel C, Saez F, Cadet R, Henry-Berger J, Schoor M, Gottwald U, Habenicht U, Drevet JR, Vernet P (2009) Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest 119:2074–2085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chao HT, Lee SY, Lee HM, Liao TL, Wei YH, Kao SH (2005) Repeated ovarian stimulations induce oxidative damage and mitochondrial DNA mutations in mouse ovaries. Ann N Y Acad Sci 1042:148–156

    Article  CAS  PubMed  Google Scholar 

  • Cho SH, Lee CH, Ahn Y, Kim H, Kim H, Ahn CY, Yang KS, Lee SR (2004) Redox regulation of PTEN and protein tyrosine phosphatases in H(2)O(2) mediated cell signaling. FEBS Lett 560:7–13

    Article  CAS  PubMed  Google Scholar 

  • Choi JK, Ahn JI, Park JH, Lim JM (2011) Derivation of developmentally competent oocytes by in vitro culture of preantral follicles retrieved from aged mice. Fertil Steril 95:1487–1489

    Article  PubMed  Google Scholar 

  • Conrad M, Moreno SG, Sinowatz F, Ursini F, Kölle S, Roveri A, Brielmeier M, Wurst W, Maiorino M, Bornkamm GW (2005) The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol 25:7637–7644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Geyter C, De Geyter M, Steimann S, Zhang H, Holzgreve W (2007) Comparative birth weights of singletons born after assisted reproduction and natural conception in previously infertile women. Hum Reprod 22:2476–2480

    Article  Google Scholar 

  • de Lamirande E, O’Flaherty C (2008) Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta 1784:106–115

    Article  PubMed  Google Scholar 

  • Díaz-García C, Estella C, Perales-Puchalt A, Simón C (2011) Reproductive medicine and inheritance of infertility by offspring: the role of fetal programming. Fertil Steril 96:536–545

    Article  PubMed  Google Scholar 

  • Doornbos ME, Maas SM, McDonnell J, Vermeiden JP, Hennekam RC (2006) Infertility, assisted reproduction technologies and imprinting disturbances: a Dutch study. Hum Reprod 21:705–712

    Google Scholar 

  • Drevet JR (2006) The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol 250:70–79

    Article  CAS  PubMed  Google Scholar 

  • Ducsay CA, Myers DA (2011) eNOS activation and NO function: differential control of steroidogenesis by nitric oxide and its adaptation with hypoxia. J Endocrinol 210:259–269

    Article  CAS  PubMed  Google Scholar 

  • Dumollard R, Duchen M, Carroll J (2007) The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 77:21–49

    Article  CAS  PubMed  Google Scholar 

  • Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flohé L (2007) Selenium in mammalian spermiogenesis. Biol Chem 388:987–995

    Article  PubMed  Google Scholar 

  • Fujii J, Ikeda Y (2002) Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep 7:123–130

    Article  CAS  PubMed  Google Scholar 

  • Fujii J, Iuchi Y (2010) Requirement of multiple antioxidative/redox systems to support male fertility. In: Glantz B, Edquist K (eds) Male and female infertility: genetic causes, hormonal treatments and health effects. Nova Science Publisher, Hauppauge, pp 33–54

    Google Scholar 

  • Fujii J, Tsunoda S (2011) Redox regulation of spermatogenic process and fertilization. Asian J Androl 13:420–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii J, Ito JI, Zhang X, Kurahashi T (2011) Unveiling the roles of the glutathione redox system in vivo by analyzing genetically modified mice. J Clin Biochem Nutr 49:70–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gharagozloo P, Aitken RJ (2011) The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod 26:1628–1640

    Article  PubMed  Google Scholar 

  • Goud AP, Goud PT, Diamond MP, Gonik B, Abu-Soud HM (2006) Activation of the cGMP signaling pathway is essential in delaying oocyte aging in diabetes mellitus. Biochemistry 45:11366–11378

    Article  CAS  PubMed  Google Scholar 

  • Gualtieri R, Mollo V, Duma G, Talevi R (2009) Redox control of surface protein sulphhydryls in bovine spermatozoa reversibly modulates sperm adhesion to the oviductal epithelium and capacitation. Reproduction 138:33–43

    Article  CAS  PubMed  Google Scholar 

  • Han SJ, Vaccari S, Nedachi T, Andersen CB, Kovacina KS, Roth RA, Conti M (2006) Protein kinase B/Akt phosphorylation of PDE3A and its role in mammalian oocyte maturation. EMBO J 25:5716–5725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hendriks WJ, Elson A, Harroch S, Stoker AW (2008) Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS J 275:816–830

    Article  CAS  PubMed  Google Scholar 

  • Herrero MB, de Lamirande E, Gagnon C (2003) Nitric oxide is a signaling molecule in spermatozoa. Curr Pharm 9:419–425

    Article  CAS  Google Scholar 

  • Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 34:145–169

    Article  CAS  PubMed  Google Scholar 

  • Itahana K, Campisi J, Dimri GP (2004) Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5:1–10

    Article  CAS  PubMed  Google Scholar 

  • Iuchi Y, Okada F, Tsunoda S, Kibe N, Shirasawa N, Ikawa M, Okabe M, Ikeda Y, Fujii J (2009) Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J 419:149–158

    Article  CAS  PubMed  Google Scholar 

  • Jabbour HN, Sales KJ, Catalano RD, Norman JE (2009) Inflammatory pathways in female reproductive health and disease. Reproduction 138:903–919

    Article  CAS  PubMed  Google Scholar 

  • Jiménez A, Zu W, Rawe VY, Pelto-Huikko M, Flickinger CJ, Sutovsky P, Gustafsson JA, Oko R, Miranda-Vizuete A (2004) Spermatocyte/spermatid-specific thioredoxin-3, a novel Golgi apparatus-associated thioredoxin, is a specific marker of aberrant spermatogenesis. J Biol Chem 279:34971–34982

    Article  PubMed  Google Scholar 

  • Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S (1995) Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril 64:577–583

    CAS  PubMed  Google Scholar 

  • Kimura N, Fujii J (2010) Active oxygen species as a signal of embryonic developmental arrest and death. In: Glantz B, Edquist K (eds) Male and female infertility: genetic causes, hormonal treatments and health effects. Nova Science Publisher, Hauppauge, pp 55–75

    Google Scholar 

  • Kimura N, Tsunoda S, Iuchi Y, Abe H, Totsukawa K, Fujii J (2010) Intrinsic oxidative stress causes either 2-cell arrest or cell death depending on developmental stage of the embryos from SOD1-deficient mice. Mol Hum Reprod 16:441–451

    Article  CAS  PubMed  Google Scholar 

  • Kumar TR, Wiseman AL, Kala G, Kala SV, Matzuk MM, Lieberman MW (2000) Reproductive defects in gamma-glutamyl transpeptidase-deficient mice. Endocrinology 141:4270–4277

    CAS  PubMed  Google Scholar 

  • Lanzafame FM, La Vignera S, Vicari E, Calogero AE (2009) Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online 19:638–659

    Article  CAS  PubMed  Google Scholar 

  • Li J, Kawamura K, Cheng Y, Liu S, Klein C, Liu S, Duan EK, Hsueh AJ (2010) Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci USA 107:10280–10284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lincoln AJ, Wickramasinghe D, Stein P, Schultz RM, Palko ME, De Miguel MP, Tessarollo L, Donovan PJ (2002) Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat Genet 30:446–449

    Article  CAS  PubMed  Google Scholar 

  • Maiorino M, Bosello V, Ursini F, Foresta C, Garolla A, Scapin M, Sztajer H, Flohe L (2003) Genetic variations of gpx-4 and male infertility in humans. Biol Reprod 68:1134–1141

    Article  CAS  PubMed  Google Scholar 

  • Matzuk MM, Dionne L, Guo Q, Kumar TR, Lebovitz RM (1998) Ovarian function in superoxide dismutase 1 and 2 knockout mice. Endocrinology 139:4008–4011

    Article  CAS  PubMed  Google Scholar 

  • Miao YL, Kikuchi K, Sun QY, Schatten H (2009) Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update 15:573–585

    Article  PubMed  Google Scholar 

  • Morham SG, Langenbach R, Loftin CD, Tiano HF, Vouloumanos N, Jennette JC, Mahler JF, Kluckman KD, Ledford A, Lee CA, Smithies O (1995) Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 83:473–482

    Article  CAS  PubMed  Google Scholar 

  • Nakamura BN, Fielder TJ, Hoang YD, Lim J, McConnachie LA, Kavanagh TJ, Luderer U (2011) Lack of maternal glutamate cysteine ligase modifier subunit (Gclm) decreases oocyte glutathione concentrations and disrupts preimplantation development in mice. Endocrinology 152:2806–2815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura Y, Yamagata Y, Sugino N, Takayama H, Kato H (2002) Nitric oxide inhibits oocyte meiotic maturation. Biol Reprod 67:1588–1592

    Article  CAS  PubMed  Google Scholar 

  • Nasr-Esfahani MM, Johnson MH (1991) The origin of reactive oxygen species in mouse embryos cultured in vitro. Development 113:551–560

    CAS  PubMed  Google Scholar 

  • Nastri CO, Ferriani RA, Rocha IA, Martins WP (2010) Ovarian hyperstimulation syndrome: pathophysiology and prevention. J Assist Reprod Genet 27:121–128

    Article  PubMed Central  PubMed  Google Scholar 

  • Nonogaki T, Noda Y, Narimoto K, Umaoka Y, Mori T (1991) Protection from oxidative stress by thioredoxin and superoxide dismutase of mouse embryos fertilized in vitro. Hum Reprod 6:1305–1310

    CAS  PubMed  Google Scholar 

  • Parker LL, Piwnica-Worms H (1992) Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 257:1955–1957

    Article  CAS  PubMed  Google Scholar 

  • Raineri I, Carlson EJ, Gacayan R, Carra S, Oberley TD, Huang TT, Epstein CJ (2001) Strain-dependent high-level expression of a transgene for manganese superoxide dismutase is associated with growth retardation and decreased fertility. Free Radic Biol Med 31:1018–1030

    Article  CAS  PubMed  Google Scholar 

  • Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hämäläinen T (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319:611–613

    Article  CAS  PubMed  Google Scholar 

  • Renko K, Werner M, Renner-Müller I, Cooper TG, Yeung CH, Hollenbach B, Scharpf M, Köhrle J, Schomburg L, Schweizer U (2008) Hepatic selenoprotein P (SePP) expression restores selenium transport and prevents infertility and motor-incoordination in Sepp-knockout mice. Biochem J 409:741–749

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    Article  PubMed  Google Scholar 

  • Sanocka D, Kurpisz M (2004) Reactive oxygen species and sperm cells. Reprod Biol Endocrinol 2:12–18

    Article  PubMed Central  PubMed  Google Scholar 

  • Savitsky PA, Finkel T (2002) Redox regulation of Cdc25C. J Biol Chem 277:20535–20540

    Article  CAS  PubMed  Google Scholar 

  • Sela-Abramovich S, Galiani D, Nevo N, Dekel N (2008) Inhibition of rat oocyte maturation and ovulation by nitric oxide: mechanism of action. Biol Reprod 78:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Su D, Novoselov SV, Sun QA, Moustafa ME, Zhou Y, Oko R, Hatfield DL, Gladyshev VN (2005) Mammalian selenoprotein thioredoxin-glutathione reductase. Roles in disulfide bond formation and sperm maturation. J Biol Chem 280:26491–26498

    Article  CAS  PubMed  Google Scholar 

  • Sun QA, Kirnarsky L, Sherman S, Gladyshev VN (2001) Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc Natl Acad Sci USA 98:3673–3678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tarin JJ, Perez-Albala S, Cano A (2000) Consequences on offspring of abnormal function in ageing gametes. Hum Reprod Update 6:532–549

    Article  CAS  PubMed  Google Scholar 

  • Tatone C, Carbone MC, Gallo R, Delle Monache S, Di Cola M, Alesse E (2006) Amicarelli FAge-associated changes in mouse oocytes during postovulatory in vitro culture: possible role for meiotic kinases and survival factor BCL2. Biol Reprod 74:395–402

    Article  CAS  PubMed  Google Scholar 

  • Tremellen K (2008) Oxidative stress and male infertility–a clinical perspective. Hum Reprod Update 14:243–258

    Article  CAS  PubMed  Google Scholar 

  • Turner TT, Lysiak JJ (2008) Oxidative stress: a common factor in testicular dysfunction. J Androl 29:488–498

    Article  CAS  PubMed  Google Scholar 

  • Van Blerkom J, Davis P, Thalhammer V (2008) Regulation of mitochondrial polarity in mouse and human oocytes: the influence of cumulus derived nitric oxide. Mol Hum Reprod 14:431–434

    Article  PubMed  Google Scholar 

  • Wathes DC, Abayasekara DR, Aitken RJ (2007) Polyunsaturated fatty acids in male and female reproduction. Biol Reprod 77:190–201

    Article  CAS  PubMed  Google Scholar 

  • Yang JZ, Ajonuma LC, Rowlands DK, Tsang LL, Ho LS, Lam SY, Chen WY, Zhou CX, Chung YW, Cho CY, Tse JY, James AE, Chan HC (2005) The role of inducible nitric oxide synthase in gamete interaction and fertilization: a comparative study on knockout mice of three NOS isoforms. Cell Biol Int 29:785–791

    Article  CAS  PubMed  Google Scholar 

  • Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Belter JG, Motta L, Richardson A, Prolla TA (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34:496–502

    Article  CAS  PubMed  Google Scholar 

  • Yim SH, Kim YJ, Oh SY, Fujii J, Zhang Y, Gladyshev VN, Rhee SG (2011) Identification and characterization of an alternatively transcribed form of peroxiredoxin IV that is specifically expressed in spermatids of the postpubertal mouse testis. J Biol Chem 286:39002–39012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin Y, DeWolf WC, Morgentaler A (1998) Experimental cryptorchidism induces testicular germ cell apoptosis by p53-dependent and-independent pathways in mice. Biol Reprod 58:492–496

    Article  CAS  PubMed  Google Scholar 

  • Zito E, Melo EP, Yang Y, Wahlander Ã…, Neubert TA, Ron D (2010) Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. Mol Cell 40:787–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a Health Research on Children, Youth, and Families grant from Health and Labor Sciences Research Grants (2009–2011: J.F.) and by the YU-COE program (E) from Yamagata University (2010–2011: J.F. and N.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Fujii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Fujii, J., Tsunoda, S., Kimura, N. (2014). Antithetical Roles of Reactive Oxygen Species in Mammalian Reproduction. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_108

Download citation

Publish with us

Policies and ethics