Skip to main content

pH Banding in Charophyte Algae

  • Chapter
  • First Online:
Plant Electrophysiology

Abstract

The internodal cells of Characean algal species have long served as a model for membrane processes in plants, because their large size (up to several centimetres in length), simple geometry (cylinder) and clear separation from other cells in the plant have allowed experimental techniques such as multielectrode electrophysiological techniques and cell perfusion. However, the membranes of these cells are not homogeneous, but show distinct differences in their electrophysiological characteristics and transport capabilities. The most obvious example of this non uniformity is the pH difference seen in the external medium surrounding the cells, the “acid bands”, with a pH similar or slightly acid to the bulk medium, and “alkaline bands”, which can support a pH of 10 or higher. We explore here the transport properties that underlie these differences and their relation to photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

AP:

Action potential

APW:

Artificial pond water

ATP:

Adenosine triphosphate

AZ:

Acetazolamide

Ej :

Nernst potential for the ion j

DIC:

Dissolved inorganic carbon

DES:

Diethylstilbestrol

DCMU:

(3-(3,4-dichlorophenyl)-1,1-dimethylurea

DCCD:

N,N′-dicyclohexylcarbodiimide

EZA:

Ethoxyzolamide, an inhibitor of carbonic anhydrase

EDAC:

1–ethyl -3-(3-dimethylamino-propyl) carbodiimide

Evo :

Vacuole to outside potential difference

Eco :

Cytoplasm to outside potential difference

Evc :

Vacuole to cytoplasm potential difference

F:

Faraday constant 96,485.3 C/mol in Eqs. 11.111.3

F:

Fluorescence yield

F’m :

Saturation fluorescence

GHK:

Goldman-Hodgkin-Katz equation

g bkg :

Background conductance (I/V modelling)

G/V:

Conductance as a function of voltage

\( \Updelta \bar{\mu }_{H} ,\Updelta \bar{\mu }_{\text{Na}} \) :

Electrical chemical potential difference for H+ or Na+, respectively

H+/OH state:

State of the membrane whose electrical characteristics are dominated by H+ or OH leak

Hepes:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, zwitterionic buffer with pKa = 7.55/OH

I bkg :

Background current (I/V modelling)

k 0io , k 0oI , kio, koi :

Proton pump parameters (I/V modelling)

I/V:

Current as a function of voltage

NEM:

N-ethyl maleimide

NPQ:

Non-photochemical quenching, a measure of impairment of photosynthesis derived from fluorescence studies

NXPX :

Number of channels conducting ion X

PCMBS:

p-(chloromercuri)benzene sulfonate

PD:

Electrical potential difference across a membrane

pHc :

Cytoplasmic pH

pHo :

External pH

Po− and Po+ :

Open probabilities of a channel at negative and positive potentials, respectively

R:

Gas constant 8.314 J/mol.K

Rco :

Plasma membrane resistance

T:

Temperature in Kelvin

V :

Transmembrane PD in volts

V 50 :

Half-activation potential (Eqs. 11.2, 11.3)

V bkg :

Background current reversal PD (I/V modelling, usually taken as -100 mV)

[X]o, [X]i :

Medium and intracellular concentrations, respectively, of ion X (Eq. 11.1)

Y′:

Quantum yield, a measure of photosynthesis derived from fluorescence studies

Z:

Valency of ion X (Eq. 11.1)

z g :

Charge associated with channel gating (Eqs. 11.2, 11.3)

References

  • Al Khazaaly S, Beilby MJ (2012) Zinc ion blocks H+/OH- channels in Chara australis. Plant Cell Environ (published on line)

    Google Scholar 

  • Amtmann A, Sanders D (1999) Mechanism of Na+ uptake by plant cells. Adv Bot Res 29:75–112

    Article  CAS  Google Scholar 

  • Arens K (1939) Physiologische multipolaritat der zelle von Nitella der photosynthese. Protoplasma 33:295–300

    Article  CAS  Google Scholar 

  • Babourina O, Voltchanskii K, Newman I (2004) Ion flux interaction with cytoplasmic streaming in branchlets of Chara australis. J Exp Bot 55:2505–2512

    Article  PubMed  CAS  Google Scholar 

  • Beilby MJ, Al Khazaaly S (2009) The role of H+/OH channels in salt stress response of Chara australis. J Membr Biol 230:21–34

    Article  PubMed  CAS  Google Scholar 

  • Beilby MJ, Mimura T, Shimmen T (1993) The proton pump, high pH channels, and excitation: voltage clamp studies of intact and perfused cells of Nitellopsis obtusa. Protoplasma 175:144–152

    Article  CAS  Google Scholar 

  • Beilby MJ, Walker NA (1996) Modelling the current-voltage characteristics of Chara membranes. I. the effect of ATP and zero turgor. J Membr Biol 149:89–101

    Article  PubMed  CAS  Google Scholar 

  • Beilby MJ (1984) Current–voltage characteristics of the proton pump at Chara plasmalemma: I. pH dependence. J Membr Biol 81:113–125

    Article  Google Scholar 

  • Beilby MJ (1986) Potassium channels and different states of Chara plasmalemma. J Membr Biol 89:241–249

    Article  CAS  Google Scholar 

  • Beilby MJ (1989) Electrophysiology of giant algal cells. In: Fleischer S, Fleischer B (eds) Methods in enzymology, vol 174. Academic Press, San Diego, pp 403–443

    Google Scholar 

  • Beilby MJ (1990) Current-voltage curves for plant membrane studies: a critical analysis of the method. J Exp Bot 41:165–182

    Article  Google Scholar 

  • Beilby MJ (2007) Action potential in charophytes. In: Jeon KW (ed) International review of cytology, vol 257. Elsevier Inc. San Diego, California, pp 43–82

    Google Scholar 

  • Beilby MJ, Bisson MA (1992) Chara plasmalemma at high pH: voltage dependence of the conductance at rest and during excitation. J Membr Biol 125:25–39

    PubMed  CAS  Google Scholar 

  • Beilby MJ, Shepherd VA (1989) Cytoplasm-enriched fragments of Chara: structure and electrophysiology. Protoplasma 148:150–163

    Article  Google Scholar 

  • Bisson MA (1984) Calcium effects on electrogenic pump and passive permeability of the plasma membrane of Chara corallina. J Membr Biol 81:59–67

    Article  PubMed  CAS  Google Scholar 

  • Bisson MA (1986a) Inhibitors of proton pumping. Effect on passive proton transport. Plant Physiol 81:55–59

    Article  PubMed  CAS  Google Scholar 

  • Bisson MA (1986b) The effect of darkness on active and passive transport in Chara corallina. J Exp Bot 37:8–21

    Article  CAS  Google Scholar 

  • Bisson MA, Siegel A, Chan R, Gelsomino SA, Herdic SL (1991) Distribution of charasomes in Chara—banding-pattern and effect of photosynthetic inhibitors. Aust J Plant Physiol 18:81–93

    Article  Google Scholar 

  • Bisson MA, Walker NA (1980) The Chara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H+ or OH. J Membr Biol 56:1–7

    Article  CAS  Google Scholar 

  • Bisson MA, Walker NA (1981) The hyperpolarisation of the Chara membrane at high pH: effects of external potassium, internal pH, and DCCD. J Exp Bot 32:951–971

    Article  Google Scholar 

  • Bisson MA, Walker NA (1982) Control of passive permeability in the Chara plasmalemma. J Exp Bot 33:520–532

    Article  CAS  Google Scholar 

  • Brechignac F, Lucas WJ (1987) Photorespiration and Internal CO2 accumulation in Chara corallina as inferred from the influence of DIC and O2 on photosynthesis. Plant Physiol 83:163–169

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Cherkashin AA, Rubin AB, Vredenberg WJ, Zykov VS, Muller SC (2001a) Comparative study on photosynthetic activity of chloroplasts in acid and alkaline zones of Chara corallina. Bioelectrochemistry 53:225–232

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Kamzolkina NA, Luengviriya J, Rubin AB, Muller SC (2004) Effect of a single excitation stimulus on photosynthetic activity and light-dependent pH banding in Chara cells. J Membr Biol 202:11–19

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Kamzolkina NA, Rubin AB (2005) Effect of plasmalemma electrical excitation on photosystem II activity and nonphotochemical quenching in chloroplasts of cell domains in Chara corallina. Dokl Biochem Biophys 401:127–130

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Krupenina NA (2009) Transient removal of alkaline zones after excitation of Chara cells is associated with inactivation of high conductance in the plasmalemma. Plant Signalling Behav 4:727–734

    Article  CAS  Google Scholar 

  • Bulychev AA, Krupenina NA (2010) Inactivation of plasmalemma conductance in alkaline zones of Chara corallina after generation of action potential. Biochemistry (Moscow) supplement series A. Membr Cell Biol 4:232–239

    Google Scholar 

  • Bulychev AA, Polezhaev AA, Zykov SV, Pljusnina TYu, Riznichenko GYu, Rubin AB, Jantos W, Zykov VS, Muller SC (2001b) Light-triggered pH banding profile in Chara cells revealed with a scanning pH microprobe and its relation to self-organisation phenomena. J Theor Biol 212:275–294

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Vredenberg W (2003) Spatio-temporal patterns of photosystem II activity and plasma membrane proton flows in Chara corallina cells exposed to overall and local illumination. Planta 218:143–151

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Zykov SV, Rubin AB, Muller SC (2003) Transitions from alkaline spots to regular bands during pH pattern formation at the plasmalemma of Chara cells. Eur Biophys J 32:144–153

    PubMed  CAS  Google Scholar 

  • Chau R, Bisson MA, Siegel A, Elkin G, Klim P, Strabinger RM (1994) Distribution of charasomes in Chara—reestablishment and loss in darkness and correlation with banding and inorganic carbon uptake. Aust J Plant Physiol 21:113–123

    Article  Google Scholar 

  • Coster HGL, Smith JR (1977) Low-frequency impedance of Chara corallina: simultaneous measurements of the separate plasmalemma and tonoplast capacitance and conductance. Aust J Plant Physiol 4:667–674

    Google Scholar 

  • Dodonova SO, Bulychev AA (2011) Cyclosis-related asymmetry of chloroplast-plasma membrane interactions at the margins of illuminated area in Chara corallina cells. Protoplasma 248:737–749

    Article  PubMed  CAS  Google Scholar 

  • Dorn A, Weisenseel MH (1984) Growth and the current pattern around internodal cells of Nitella flexilis L. J Exp Bot 35:373–383

    Article  Google Scholar 

  • Eremin A, Bulychev AA, Krupenina NA, Mair T, Hauser MJB, Stannarius R, Muller SC, Rubin AB (2007) Excitation-induced dynamics of external pH pattern in Chara corallina cells and its dependence on external calcium concentration. Photochem Photobiol Sci 6:103–109

    Article  PubMed  CAS  Google Scholar 

  • Feijo J, Sainhas J, Hackett GR, Kinkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144:483–496

    Article  PubMed  CAS  Google Scholar 

  • Felle HH (1982) Effects of fusicoccin upon membrane potential, resistance and current-voltage characteristics in root hairs of Sinapis alba. Plant Sci Lett 25:219–225

    Article  CAS  Google Scholar 

  • Findlay GP, Hope AB (1964) Ionic relations of cells of Chara australis: VII. The separate electrical characteristics of the plasmalemma and tonoplast. Aust J Biol Sci 17:62–77

    CAS  Google Scholar 

  • Fisahn J, Lucas WJ (1995) Spatial organisation of transport domains and subdomains formation in the plasma membrane of Chara corallina. J Membr Biol 147:275–281

    PubMed  CAS  Google Scholar 

  • Franceschi VR, Lucas WJ (1980) Structure and possible function(s) of charasomes; complex plasmalemma-cell wall elaborations present in some characeaen species. Protoplasma 104:253–271

    Article  CAS  Google Scholar 

  • Gutknecht J, Bisson MA, Tosteson DC (1977) Diffusion of carbon dioxide across lipid bilayer membranes. J Gen Physiol 69:779–794

    Article  PubMed  CAS  Google Scholar 

  • Hansen U-P, Gradmann D, Sanders D, Slayman CL (1981) Interpretation of current-voltage relationship for “active” ion transport systems: I. Steady-state reaction-kinetic analysis of class I mechanisms. J Membr Biol 63:165–190

    Article  PubMed  CAS  Google Scholar 

  • Hope AB, Walker NA (1975) The physiology of giant algal cells. Cambridge University Press, London

    Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294:2351–2353

    Article  PubMed  CAS  Google Scholar 

  • Kiegle EA, Bisson MA (1996) Plasma membrane Na+ transport in a salt-tolerant charophyte. Plant Physiol 111:1191–1197

    PubMed  CAS  Google Scholar 

  • Kitasato H (1968) The influence of H+ on the membrane potential and ion fluxes of Nitella. J Gen Physiol 52:60–87

    Article  PubMed  CAS  Google Scholar 

  • Krupenina NA, Bulychev AA, Roelfsema MR, Screiber U (2008) Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding. Photochem Photobiol Sci 7:681–688

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ (1975a) Photosynthetic fixation of 14Carbon by internodal cells of Chara corallina. J Exp Bot 26:331–346

    Article  CAS  Google Scholar 

  • Lucas WJ (1975b) The influence of light intensity on the activation and operation of the hydroxyl efflux system of Chara corallina. J Exp Bot 26:347–360

    Article  CAS  Google Scholar 

  • Lucas WJ (1979) Alkaline band formation in Chara corallina: due to OH efflux or H+ influx? Plant Physiol 63:248–254

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ (1983) Photosynthetic assimilation of exogenous HCO3 by aquatic plants. Annu Rev Plant Physiol 34:71–104

    Article  CAS  Google Scholar 

  • Lucas WJ, Brechignac F, Mimura T, Oross JW (1989) Charasomes are not essential for photosynthetic utilization of exogenous HCO3 in Chara corallina. Protoplasma 151:106–114

    Article  Google Scholar 

  • Lucas WJ, Dainty J (1977) Spatial distribution of functional OH carriers along a characean internodal cell: determined by the effect of cytochalasin B on H14CO3 assimilation. J Membr Biol 32:75–92

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Keifer DW, Pescareta TC (1986) Influence of culture medium pH on charasome development and chloride transport in Chara corallina. Protoplasma 130:5–11

    Article  CAS  Google Scholar 

  • Lucas WJ, Keifer DW, Sanders D (1983) Bicarbonate transport in Chara corallina: evidence for cotransport of HCO3 with H+. J Membr Biol 73:263–274

    Article  CAS  Google Scholar 

  • Lucas WJ, Nuccitelli R (1980) HCO3 and OH transport across the plasmalemma of Chara corallina: spatial resolution obtained using extracellular vibrating probe. Planta 150:120–131

    Article  CAS  Google Scholar 

  • Lucas WJ, Shimmen T (1981) Intracellular perfusion and cell centrifugation studies on plasmalemma transport processes in Chara corallina. J Membr Biol 58:227–237

    Article  CAS  Google Scholar 

  • Lucas WJ, Smith FA (1973) The formation of alkaline and acid regions at the surface of Chara corallina cells. J Exp Bot 24:1–14

    Article  CAS  Google Scholar 

  • McConnaughey TA (1991) Calcification in Chara corallina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnol Oceanogr 36:619–628

    Article  CAS  Google Scholar 

  • McConnaughey TA, Falk RH (1991) Calcium- proton exchange during algal calcification. Biol Bull 180:185–195

    Article  Google Scholar 

  • McCourt RM, Delwiche CF, Karol KG (2004) Charophyte algae and land plant origins. Trends Ecol Evol 19:661–666

    Article  PubMed  Google Scholar 

  • Mimura T, Muller R, Kaiser WM, Shimmen T, Dietz K-J (1993) ATP-dependent carbon transport in perfused Chara cells. Plant Cell Environ 16:653–661

    Article  CAS  Google Scholar 

  • Mimura T, Tazawa M (1986) Light-induced membrane hyperpolarization and adenine nucleotide levels in perfused characean cells. Plant Cell Physiol 27:319–330

    CAS  Google Scholar 

  • Newman I (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterise transporter function. Plant Cell Environ 24:1–14

    Article  PubMed  CAS  Google Scholar 

  • Ogata K, Chilcott TC, Coster HGL (1983) Spatial variation of the electrical properties of Chara australis. I. External potentials and membrane conductance. Aust J Plant Physiol 10:339–351

    Article  CAS  Google Scholar 

  • Plieth C, Tabrizi H, Hansen U-P (1994) Relationship between banding and photosynthetic activity in Chara corallina as studied by the spatially different induction curves of chlorophyll fluorescence observed by an image analysis system. Physiol Plant 91:205–211

    Article  CAS  Google Scholar 

  • Price DP, Badger MR (2002) Advances in understanding how aquatic photosynthetic organisms utilize sources of dissolved inorganic carbon for CO2 fixation. Funct Plant Biol 29:117–121

    Article  CAS  Google Scholar 

  • Price GD, Badger MR (1985) Inhibition by proton buffers of photosynthetic utilization of bicarbonate in Chara corallina. Aust J Plant Physiol 12:257–267

    Article  CAS  Google Scholar 

  • Price GD, Badger MR, Bassett ME, Whitecross MI (1985) Involvement of plasmalemmasomes and carbonic anhydrase in photosynthetic utilisation of bicarbonate in Chara corallina. Aust J Plant Physiol 12:242–256

    Google Scholar 

  • Prins HBA, Snel JFH, Helder RJ, Zanstra PE (1980) Photosynthetic HCO3 utilization and OH excretion in aquatic angiosperms. Plant Physiol 66:818–822

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1991) Terrestrial rhizophytes and H+ currents circulating over at least a millimeter: an obligate relationship? New Phytol 117:177–185

    Article  Google Scholar 

  • Ray SM, Klenell M, Choo K-S, Pedersen M, Snoeijs P (2003) Carbon acquisition mechanisms in Chara tomentosa. Aquat Bot 76:141–154

    Article  CAS  Google Scholar 

  • Reid RJ, Smith FA (1992) Measurement of calcium fluxes in plants using 45Ca. Planta 186:558–566

    Article  CAS  Google Scholar 

  • Schmolzer P, Hoftberger M, Foissner I (2011) Plasma membrane domains participate in pH-banding of Chara internodal cells. Plant and cell physiol 52:1274–1288

    Article  Google Scholar 

  • Sehnke PC, DeLille JM, Ferl RJ (2002) Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal induced transitions in protein activity. Plant Cell 14:S339–S354

    PubMed  CAS  Google Scholar 

  • Shimmen T, Kikuyama M, Tazawa M (1976) Demonstration of two stable potential states of plasmalemma of Chara without tonoplast. J Membr Biol 30:249–270

    Article  CAS  Google Scholar 

  • Shimmen T, Tazawa M (1977) Control of membrane potential and excitability of Chara cells with ATP and Mg2+. J Membr Biol 37:167–192

    Article  CAS  Google Scholar 

  • Shiraiwa Y, Kikuyama M (1989) Role of carbonic anhydrase and identification of the active species of inorganic carbon utilised for photosynthesis in Chara corallina. Plant Cell Physiol 30:581–587

    CAS  Google Scholar 

  • Simons R (1979) Strong electric field effects on transfer between membrane-bound amines and water. Nature 280:824–826

    Article  CAS  Google Scholar 

  • Smith FA (1968) Rates of photosynthesis in characeaen cells: II. Photosynthetic 14CO2 fixation and 14C-bicarbonate uptake by characean cells. J Exp Bot 19:207–217

    Article  CAS  Google Scholar 

  • Smith FA, Walker NA (1980) Photosynthesis by aquatic plants: effect of unstirred layers in relation to assimilation of CO2 and HCO3 and to carbon isotopic discrimination. New Phytol 86:245–259

    Article  CAS  Google Scholar 

  • Smith JR (1984) The electrical properties of plant cell membranes. II. Distortion of non-linear current-voltage characteristics induced by the cable properties of Chara. Aust J Plant Physiol 11:211–224

    Google Scholar 

  • Smith JR, Beilby MJ (1983) Inhibition of electrogenic transport associated with the action potential in Chara. J Membr Biol 71:131–140

    Article  Google Scholar 

  • Smith JR, Walker NA (1983) Membrane conductance of Chara measured in the acid and basic zones. J Membr Biol 73:193–202

    Article  Google Scholar 

  • Spanswick RM (1972) Evidence for an electrogenic ion pump in Nitella translucens: I. The effects of pH, K+, Na+, light and temperature on the membrane potential and resistance. Biochim Biophys Acta 288:73–89

    Article  PubMed  CAS  Google Scholar 

  • Spear DG, Barr JK, Barr CE (1969) Localization of hydrogen ion and chloride ion fluxes in Nitella. J Gen Physiol 54:397–414

    Article  PubMed  CAS  Google Scholar 

  • Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+—pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689

    Article  PubMed  CAS  Google Scholar 

  • Takeshige K, Shimmen T, Tazawa M (1986) Quantitative analysis of ATP-dependent H+ efflux and pump current driven by an electrogenic pump in Nitellopsis obtusa. Plant Cell Physiology 27:337–348

    CAS  Google Scholar 

  • Tazawa M (1964) Studies on Nitella having artificial cell sap. I Replacement of the cell sap with artificial solutions. Plant Cell Physiol 5:33–43

    CAS  Google Scholar 

  • Tazawa M, Kikuyama M, Shimmen T (1976) Electric characteristics and cytoplasmic streaming of characeae cells lacking tonoplast. Cell Struct Funct 1:165–175

    Article  CAS  Google Scholar 

  • Toko K, Nosaka M, Fujiyoshi T, Yamafuji K, Ogata K (1988) Periodic band pattern as a dissipative structure in ion transport system with cylindrical shape. Bull Math Biol 50:255–288

    PubMed  CAS  Google Scholar 

  • Walker NA (1955) Microelectrode experiments on Nitella. Aust J Biol Sci 8:476–489

    CAS  Google Scholar 

  • Walker NA, Smith FA (1977) Circulating electric currents between acid and alkaline zones associated with HCO3 assimilation in Chara. J Exp Bot 28:1190–1206

    Article  CAS  Google Scholar 

  • Walker NA, Smith FA, Cathers IR (1980) Bicarbonate assimilation by freshwater charophytes and higher plants: I. membrane transport of bicarbonate ions. J Membr Biol 57:51–58

    Article  CAS  Google Scholar 

  • Whittington J, Bisson MA (1994) Na+ fluxes in Chara under salt stress. J Exp Bot 45:657–665

    Article  CAS  Google Scholar 

  • Williamson RE (1975) Cytoplasmic streaming in Chara: a cell model activated by ATP and inhibited by cytochalasin B. J Cell Sci 17:655–668

    PubMed  CAS  Google Scholar 

  • Yao X, Bisson MA, Brzezicki LJ (1992) ATP-driven proton pumping in two species of Chara differing in their salt tolerance. Plant Cell Environ 15:199–210

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary J. Beilby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beilby, M.J., Bisson, M.A. (2012). pH Banding in Charophyte Algae. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29119-7_11

Download citation

Publish with us

Policies and ethics