Skip to main content

Nano- and Biotechniques for Electronic Device Packaging

  • Chapter
  • First Online:
Bio and Nano Packaging Techniques for Electron Devices

Abstract

As stated in Chap. 1 packaging bridges the gap between miniaturized electronic and non-electrical function elements and components as well as to the environment in order to constitute systems with particular complex functions, that match the system to the environment given by the intended application and that secures and maintains the systems properties during entire life-time. It provides the structural scaffold and framework for the functional elements and components, it supplies electrical power, it provides the electrical connections to and between the elements and components within the system and other systems, it integrates sensor, information processing and actuator functions, it removes heat, it protects the system against mechanical, chemical, electromagnetic and other interfering factors required for reliability and it matches the system to the environment (Table 1.4). Conventional microelectronics and microsystems packaging uses classic semiconductor and microsystem technologies like thin-film technology, lithography-based patterning, bonding and wiring as well as traditional assembly processes (Table. 1.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akdogan, E.K., Safari, A.: Thermodynamic theory of intrinsic finite-size effects in \({\rm PbT_{i}O_{3}}\) nanocrystals. I. Nanoparticle size-dependent tetragonal phase stability. J. Appl. Phys. 101, 064114 (2007)

    Google Scholar 

  2. Almahmoud, E., Kornev, I., Bellaiche, L.: Dependence of Curie temperature on the thickness of an ultrathin ferroelectric film. Phys. Rev. B Condens. Matter 81, 064105 (2010)

    Google Scholar 

  3. Ariga, K., Hill, J.P., Ji, Q.: Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 9, 2319–2340 (2007)

    CAS  Google Scholar 

  4. Arora, A., Padua, G.W.: Review: Nanocomposites in food packaging. J. Food Sci. 75(1), R43–R49 (2010)

    CAS  Google Scholar 

  5. Bae, E.J., Choi, W.B., Jeong, K.S., Chu, J.U., Park, G.S., Song, S., Yoo, I.K.: Selective growth of carbon nanotubes on pre-patterned porous anodic aluminum oxide. Adv. Mater. 14, 277 (2002)

    CAS  Google Scholar 

  6. Bai, C.: Scanning Tunneling Microscopy and its Applications. Springer, New York (2000)

    Google Scholar 

  7. Baker, D.: A surprising simplicity to protein folding. Nature 405, 39–42 (2000)

    CAS  Google Scholar 

  8. Bakunin, V.N., Suslov, A.Y., Kuzmina, G.N., Parenago, O.P., Topchiev, A.V.: Synthesis and application of inorganic nanoparticles as lubricant components—a review. J. Nanopart. Res. 6(2), 273–284 (2004)

    CAS  Google Scholar 

  9. Balzani, V., Credi, A., Raymo, F.M., Stoddart, J.F.: Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3349–3391 (2000)

    Google Scholar 

  10. Barke, I., Rügheimer, T.K., Zheng, F., Himpsel, F.J.: Atomically precise self-assembly of one-dimensional structures on silicon. Appl. Surf. Sci. 254, 4–11 (2007)

    CAS  Google Scholar 

  11. Becke, K.J., Fiedler, S., Bauer, J., Mollath, G., Schreck, G., Kolesnik, I., Reichl, H.: Contact-free component assembly—a new approach in microsystem packaging. In: Mikrosystemtechnik Kongress. VDE Verlag, Berlin (2007)

    Google Scholar 

  12. Bethune, D.S., Klang, C.H., De Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 (1993)

    CAS  Google Scholar 

  13. Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)

    Google Scholar 

  14. Binnig, G., Rohrer, H.: Scanning tunneling microscopy. IBM J. Res. Dev. 30, 4 (1986)

    Google Scholar 

  15. Blodgett, K.B., Langmuir, I.: Built-up films of barium stearate and their optical properties. Phys. Rev. 51(11), 964–982 (1937)

    CAS  Google Scholar 

  16. Bockrath, M., Cobden, D.H., McEuen, P.L., Chopra, N.G., Zettl, A., Thess, A., Smalley, R.E.: Single-electron transport in ropes of carbon nanotubes. Appl. Phys. Lett. 275(5308), 1922–1925 (1997)

    CAS  Google Scholar 

  17. Brandt, T., Hövel, M., Gompf, B., Dressel, M.: Temperature- and frequency-dependent optical properties of ultrathin Au films. Phys. Rev. B: Condens. Matter 78, 205409 (2008)

    Google Scholar 

  18. Bratton, D., Yang, D., Dai, J., Ober, C.K.: Recent progress in high resolution lithography. Polym. Adv. Technol. 17(2), 94–103 (2006)

    CAS  Google Scholar 

  19. Bryson, J.W., Betz, S.F., Lu, H.S., Suich, D.J., Zhou, H.X., O’Neil, K.T., DeGrado, W.F.: Protein design: A hierarchic approach. Science 270(5238), 935–941 (1995)

    CAS  Google Scholar 

  20. Bukowski, T.J., Simmons, J.H.: Quantum dot research: Current state and future prospects. Crit. Rev. Solid State Mater. Sci. 27(3–4), 119–142 (2002)

    CAS  Google Scholar 

  21. Burns, M.M., Fournier, J.M., Golovchenko, J.A.: Optical matter: crystallization and binding in intense optical fields. Science 249(5009), 749–754 (1990)

    CAS  Google Scholar 

  22. Castillo, J., Dimaki, M., Svendsen, W.E.: Manipulation of biological samples using micro and nano techniques. Integr. Biol. 1, 30–42 (2009)

    CAS  Google Scholar 

  23. Chapman, A.: England’s Leonardo: Robert Hooke (1635–1703) and the art of experiment in restoration England. Proceedings of the Royal Institution of Great Britain 67, 239–275 (1996)

    Google Scholar 

  24. Chen, J., Seeman, N.C.: Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350(6319), 631–633 (1991)

    CAS  Google Scholar 

  25. Cheng, J.Y., Ross, C.A., Smith, H.I., Thomas, E.L.: Templated self-assembly of block copolymers: top–down helps bottom–up. Adv. Mater. 18, 2505–2521 (2006)

    CAS  Google Scholar 

  26. Choudalakis, G., Gotsis, A.D.: Permeability of polymer/clay nanocomposites: A review. Eur. Polym. J. 45(4), 967–984 (2009)

    CAS  Google Scholar 

  27. Chung, S.E., Park, W., Shin, S., Lee, S.A., Kwon, S.: Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat. Mater. 7, 581–587 (2008)

    CAS  Google Scholar 

  28. Cleanrooms and associated controlled environments—part 6: Vocabulary. ISO 14644–6:2007 (2007)

    Google Scholar 

  29. Creighton, T.E.: Protein folding. Biochem. J. 270(1), 1–16 (1990)

    CAS  Google Scholar 

  30. Cuello, J.C.: Engineering to biology and biology to engineering. The bi-directional connection between engineering and biology in biological engineering design. Int. J. Eng. Educ. 21, 1–7 (2005)

    Google Scholar 

  31. Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997)

    CAS  Google Scholar 

  32. Dekker, C.: Solid-state nanopores. Nat. Nanotechnol. 2, 209–215 (2007)

    CAS  Google Scholar 

  33. Demus, D., Goodby, J., Gray, G.W., Spiess, H.W. (eds.): Handbook of Liquid Crystals. Wiley-VCH, Weinheim (1998)

    Google Scholar 

  34. Desiraju, G.R.: Crystal Engineering: the Design of Organic Solids. Elsevier, New York (1989)

    Google Scholar 

  35. Di Pippo, A.G., Joseph, M.: Melting point depression. J. Chem. Educ. 42(5), A413 (1965)

    Google Scholar 

  36. Douglas, S.M., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.M.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009)

    CAS  Google Scholar 

  37. Drexler, K.E.: Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. USA 78, 5275–5278 (1981)

    CAS  Google Scholar 

  38. Drexler, K.E.: Engines of Creation: the Coming Era of Nanotechnology. Anchor Books 1986, New York (1986)

    Google Scholar 

  39. Drexler, K.E., Randall, J., Corchnoy, S., Kawczak, A., Steve, M.L.: Productive nanosystems. a technology roadmap. Technical report, Battelle Memorial Institute and Foresight Nanotech Institute (2007)

    Google Scholar 

  40. Dyson, P., Ransing, R., Williams, P.H., Williams, R.: Fluid Properties at Nano/Meso Scale: a Numerical Treatment. Wiley, Chichester (2008)

    Google Scholar 

  41. Endy, D.: Foundations for engineering biology. Nature 438, 449–453 (2005)

    CAS  Google Scholar 

  42. Fange, D., Elf, J.: Noise-induced Min phenotypes in E. coli. PLoS Comput. Biol. 2(6), 637–648 (2006)

    Google Scholar 

  43. Fendler, J.H.: Chemical self-assembly for electronic applications. Chem. Mater. 13(10), 3196–3210 (2001)

    CAS  Google Scholar 

  44. Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J., Zettl, A.: Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003)

    CAS  Google Scholar 

  45. Feynman, R.: There’s plenty of room at the bottom. An invitation to enter a new field of physics. Caltech Eng. Sci. 23(5), 22–36 (1960)

    Google Scholar 

  46. Finn, A., Schossig, M., Norkus, V., Gerlach, G.: Microstructured surfaces on \({\rm LiTaO}_{3}\)-based pyroelectric infrared detectors. IEEE Sens. J. 11, 2204–2211 (2011). 10.1109/JSEN.2011.2128307

    Google Scholar 

  47. Flinn, R.A., Trojan, P.K.: Engineering Materials and Their Applications, 4th edn. Houghton-Mifflin, Boston (1990)

    Google Scholar 

  48. Friedman, Y.: Building Biotechnology: Business, Regulations, Patents, Law, Politics, Science, 3rd edn. Logos Press, Washington DC (2008)

    Google Scholar 

  49. Fukuda, T., Arai, F., Dong, L.: Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc. IEEE 91(11), 1803–1818 (2003)

    CAS  Google Scholar 

  50. Gerlach, G., Dötzel, W.: Introduction to Microsystem Technology. A Guide for Students. Wiley, Chichester (2008)

    Google Scholar 

  51. Glotzer, S.C., Solomon, M.J.: Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007)

    Google Scholar 

  52. Greiner, F., Schlaak, H.F., Tschulena, G., Korb, W.: Mikro-Nano-Integration—Nanotechnologie in der Mikrosystemtechnik. Tech. rep., Hessisches Ministerium für Wirtschaft, Verkehr und Landesentwicklung (2009). http://www.hessen-nanotech.de/mm/Broschuere_Mikro-Nano-Integration_web.pdf

  53. Gu, L.Q., Shim, J.W.: Single molecule sensing by nanopores and nanopore devices. Analyst 135, 441–451 (2010)

    CAS  Google Scholar 

  54. Gu, Q., Cheng, C., Gonela, R., Suryanarayanan, S., Anabathula, S., Dai, K., Haynie, D.T.: DNA nanowire fabrication. Nanotechnology 17(1), R14–R25 (2006)

    CAS  Google Scholar 

  55. Härtling, T., Alaverdyan, Y., Wenzel, M.T., Kullock, R., Käll, M., Eng, L.M.: Photochemical tuning of plasmon resonances in single gold nanoparticles. J. Phys. Chem. C 112(13), 4920–4924 (2008)

    Google Scholar 

  56. Haussmann, A., Milde, P., Erler, C., Eng, L.M.: Ferroelectric lithography: bottom–up assembly and electrical performance of a single metallic nanowire. Nano Lett. 9(2), 763–768 (2009)

    CAS  Google Scholar 

  57. He, F., Han, Q., Jackson, M.J.: Nanoparticulate reinforced metal matrix nanocomposites—a review. Int. J. Nanopart. 1(4), 301–309 (2008)

    CAS  Google Scholar 

  58. Hea, B., Morrowa, T.J., Keating, C.D.: Nanowire sensors for multiplexed detection of biomolecules. Curr. Opin. Chem. Biol. 12(5), 522–528 (2008)

    Google Scholar 

  59. Healy, K., Schiedt, B., Morrison, A.P.: Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine 2(6), 875–897 (2007)

    CAS  Google Scholar 

  60. Hess, B.: Periodic patterns in biology. Naturwissenschaften 87(5), 199–211 (2000)

    CAS  Google Scholar 

  61. Heyman, J.S.: Acoustophoresis method and apparatus. US Patent 5147562 (1992)

    Google Scholar 

  62. Huang, Z.M., Zhang, Y.Z.: Kotak, i.M., Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003)

    CAS  Google Scholar 

  63. Huie, J.C.: Guided molecular self-assembly: a review of recent efforts. Smart Mater. Struct. 12, 264–271 (2003)

    CAS  Google Scholar 

  64. Hussain, F., Hojjati, M., Okamoto, M., Gorga, R.E.: Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40(17), 1511–1575 (2006)

    CAS  Google Scholar 

  65. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    CAS  Google Scholar 

  66. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1 nm diameter. Nature 363(6430), 603–605 (1993)

    CAS  Google Scholar 

  67. Iler, R.K.: Multilayers of colloidal particles. J. Colloid Interface Sci. 21(6), 569–594 (1966)

    CAS  Google Scholar 

  68. Inoue, K., Ohtaka, K. (eds.): Photonic Crystals: Physics, Fabrication, and Applications. Springer, Berlin, Heidelberg (2004)

    Google Scholar 

  69. International technology roadmap for semiconductors: 2009 edition. Technical report, Assembly & Packaging (2009). http://www.itrs.net/Links/2009ITRS/Home2009.htm

  70. Jones, M.N., Chapman, D.: Micelles. Monolayers and Biomembranes. Wiley-Liss, New York (1995)

    Google Scholar 

  71. Jun, Y.W., Seo, J.W., Oh, S.J., Cheon, J.: Recent advances in the shape control of inorganic nano-building blocks. Coord. Chem. Rev. 249(17–18), 1766–1775 (2005)

    CAS  Google Scholar 

  72. Kaizawa, T., Arita, M., Fujiwara, A., Yamazaki, K., Ono, Y., Inokawa, H., Takahashi, Y., Choi, J.B.: Single-electron device with Si nanodot array and multiple input gates. IEEE T. Nanotechnol. 8(4), 535–541 (2009)

    Google Scholar 

  73. Kickelbick, G.: Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 28(1), 83–114 (2003)

    CAS  Google Scholar 

  74. Kim, P., Lieber, C.M.: Nanotube nanotweezers. Science 286(5447), 2148–2150 (1999)

    CAS  Google Scholar 

  75. Kim, S.O., Solak, H.H., Stoykovich, M.P., Ferrier, N.J., de Pablo, J.J., Nealey, P.F.: Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003)

    CAS  Google Scholar 

  76. Kovarik, M.L., Jacobson, S.C.: Integrated nanopore/microchannel devices for ac electrokinetic trapping of particles. Anal. Chem. 80(3), 657–664 (2008)

    CAS  Google Scholar 

  77. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: \({\rm C}_{60}\): Buckminsterfullerene. Nature 318(6042), 162–163 (1985)

    CAS  Google Scholar 

  78. Kuzik, L.A., Yakovlev, V.A., Pudonin, F.A., Mattei, G.: Quantum size effects in the optical conductivity of ultrathin metal films. Surf. Sci. 361–362, 882–885 (1996)

    Google Scholar 

  79. Lee, H., Lee, S., Jung, S., Lee, J.: Nano-grass polyimide-based humidity sensors. Sens. Actuators B 154, 2–8 (2011)

    Google Scholar 

  80. Lindsey, J.S.: Self-assembly in synthetic routes to molecular devices. Biological principles and chemical perspectives: a review. New J. Chem. 15(2–3), 153–179 (1991)

    CAS  Google Scholar 

  81. London: The Royal Society: Nanoscience and Nanotechnologies: Opportunities and Uncertainties. Latimer Trend Ltd, Plymouth, UK (2004). http://royalsociety.org/Nanoscience-and-nanotechnologies-opportunities-and-uncertainties-/

  82. Lourtioz, J.M.: Photonic Crystals: Towards Nanoscale Photonic Devices. Springer, Berlin (2007)

    Google Scholar 

  83. Lövestam, G., Rauscher, H., Roebben, G., Klüttgen, B.S., Gibson, N., Putaud, J.P., Stamm, H.: Considerations on a definition of nanomaterial for regulatory purposes. jrc reference reports. Technical report, European Commission, Joint Research Center (2010)

    Google Scholar 

  84. Lu, W., Lieber, C.M.: Semiconductor nanowires. J. Phys. D Appl. Phys. 39, R387–R406 (2006)

    CAS  Google Scholar 

  85. Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007)

    CAS  Google Scholar 

  86. Manzke, A., Vogel, N., Weiss, C.K., Ziener, U., Plettl, A., Landfester, K., Ziemann, P.: Arrays of size and distance controlled platinum nanoparticles fabricated by a colloidal method. Nanoscale 3, 2523–2528 (2011)

    CAS  Google Scholar 

  87. McCray, W.P.: Will small be beautiful? Making policies for our nanotech future. History and Technology 21(2), 177–203 (2005)

    Google Scholar 

  88. Mehran, M., Sanaee, Z., Mohajerzadeh, S.: Formation of silicon nanograss and microstructures on silicon using deep reactive ion etching. Micro& Nano Lett. 5, 374–378 (2010)

    CAS  Google Scholar 

  89. Miche, l.B., Bernard, A., Bietsch, A., Delamarche, E., Geissler, M., Juncker, D., Kind, H., Renault, J.P., Rothuizen, H., Schmid, H., Schmidt-Winkel, P., Stutz, R., Wolf, H.: Printing meets lithography: soft approaches to high-resolution patterning. IBM J. Res. Dev. 45(5), 697–719 (2001)

    Google Scholar 

  90. Mijatovic, D., Eijkel, J.C.T., van den Berg, A.: Technologies for nanofluidic systems: top–down vs bottom–up—a review. Lab Chip 5, 492–500 (2005)

    CAS  Google Scholar 

  91. Minko, S., Müller, M., Motornov, M., Nitschke, M., Grundke, K., Stamm, M.: Two-level structured self-adaptive surfaces with reversibly tunable properties. J. Am. Chem. Soc. 125(13), 3896–3900 (2003)

    CAS  Google Scholar 

  92. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996)

    CAS  Google Scholar 

  93. Moffitt, J.R., Chemla, Y.R., Smith, S.B., Bustamante, C.: Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008)

    CAS  Google Scholar 

  94. Monthioux, M., Kuznetsov, V.: Who should be given the credit for the discovery of carbon nanotubes? Carbon 44(9), 1621 (2006)

    CAS  Google Scholar 

  95. Moriarty, P.: Nanostructured materials. Rep. Prog. Phys. 64, 297–381 (2001)

    CAS  Google Scholar 

  96. Morris, J.E.: Nanopackaging: nanotechnologies and electronic packaging. In: ESTC 2006, 1st Electronics Systemintegration Technology Conference, pp. 874–880. Dresden, Germany (2006)

    Google Scholar 

  97. Morris, J.E. (ed.): Nanopackaging: Nanotechnologies and Electronics Packaging. Springer, New York (2008)

    Google Scholar 

  98. Mutter, M., Vuilleumier, S.: A chemical approach to protein design—template-assembled synthetic proteins (TASP). Angew. Chem. Int. Ed. 28(5), 535–554 (1989)

    Google Scholar 

  99. Naeemi, A., Meindl, J.D.: Carbon nanotube interconnects. In: ISPD ’07 Proceedings of the 2007 International Symposium on Physical Design, pp. 77–84. Austin, Texas (2007)

    Google Scholar 

  100. Naeemi, A., Sarvari, R., Meindl, J.D.: Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Electron Device Lett. 26(2), 84–86 (2005)

    CAS  Google Scholar 

  101. Nagayama, K.: Two-dimensional self-assembly of colloids in thin liquid films. Colloids Surf. A 109, 363–374 (1996)

    Google Scholar 

  102. Nanotechnologies—terminology and definitions for nanoobjects—nanoparticle, nanofibre and nanoplate. CEN ISO/TS 27687:2009 (2009)

    Google Scholar 

  103. Nanotechnologies. ISO/TC 229 (2010). http://isotc.iso.org/livelink/livelink/open/tc229

  104. Nanotechnologies—vocabulary—part 1: Core terms. ISO/TS 80004–1:2010 (2010)

    Google Scholar 

  105. Netzer, L., Sagiv, J.: A new approach to construction of artificial monolayer assemblies. J. Am. Chem. Soc. 105(3), 674–676 (1983)

    CAS  Google Scholar 

  106. Novotny, L., Bian, R.X., Xie, X.S.: Theory of nanometric optical tweezers. Phys. Rev. Lett. 79(4), 645–648 (1997)

    CAS  Google Scholar 

  107. Owen, J.H.G., Miki, K., Bowler, D.R.: Self-assembled nanowires on semiconductor surfaces. J. Mater. Sci. 41(14), 4568–4603 (2006)

    CAS  Google Scholar 

  108. Papadopoulos, C., Chang, B.H., Yin, A.J., Xu, J.M.: Engineering carbon nanotubes via template growth. Int. J. Nanosci. 1(3–4) (2002)

    Google Scholar 

  109. Patolsky, F., Zheng, G., Lieber, C.M.: Nanowire sensors for medicine and the life sciences. Nanomedicine 1(1), 51–65 (2006)

    CAS  Google Scholar 

  110. Petersson, F., Åberg, L., Swärd-Nilsson, A.M., Laurell, T.: Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal. Chem. 79(14), 5117–5123 (2007)

    CAS  Google Scholar 

  111. Pethiga, R., Markx, G.: Applications of dielectrophoresis in biotechnology. Trends Biotechnol. 15(10), 426–432 (1997)

    Google Scholar 

  112. Reich, S., Thomsen, C., Maultzsch, J.: Carbon Nanotubes: Basic Concepts and Physical Properties. Wiley-VCH, Berlin (2004)

    Google Scholar 

  113. Reimann, S.M., Manninen, M.: Electronic structure of quantum dots. Rev. Mod. Phys. 74(10), 1283–1342 (2002)

    CAS  Google Scholar 

  114. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    CAS  Google Scholar 

  115. Rubio-Sierra, F.J., Heckl, W.M., Stark, R.W.: Nanomanipulation by atomic force microscopy. Adv. Eng. Mater. 7(4), 193–196 (2005)

    CAS  Google Scholar 

  116. Schasfoort, R.B.M., Tudos, A.J. (eds.): Handbook of Surface Plasmon Resonance. RSC Publishing, London (2008)

    Google Scholar 

  117. Schossig, M., Norkus, V., Gerlach, G.: Infrared responsivity of pyroelectric detectors with nanostructured NiCr thin-film absorber. IEEE Sens. J. 10, 1564–1565 (2010)

    CAS  Google Scholar 

  118. Seeman, N.C.: Nucleic acid junctions and lattices. J. Theor. Biol. 99(2), 237 (1982)

    CAS  Google Scholar 

  119. Seeman, N.C.: From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci 30(3), 119–125 (2005)

    CAS  Google Scholar 

  120. Shankland, S.: IBM’s 35 atoms and the rise of nanotech. Technical Report. CNET News (2009). www.zdnetasia.com/ibms-35-atoms-and-the-rise-of-nanotech-62058148.htm

  121. Shieh, J., Lin, C.H., Yang, M.C.: Plasma nanofabrications and antireflection applications. J. Phys. D: Appl. Phys. 40(8), 2242–2246 (2007)

    CAS  Google Scholar 

  122. Shimomura, M., Sawadaishi, T.: Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr. Opin. Colloid Interface Sci. 6(1), 11–16 (2001)

    CAS  Google Scholar 

  123. Shipway, A.N., Katz, E., Willner, I.: Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1(1), 19–52 (2000)

    Google Scholar 

  124. Singh, R., Maru, V.M., Moharir, P.S.: Complex chaotic systems and emergent phenomena. J. Nonlinear Sci. 8(3), 235–259 (1998)

    Google Scholar 

  125. Sitti, M.: Survey of micromanipulation systems. In: IEEE Nano 2001. Proceedings of the 1st IEEE Conference on. Nanotechnology 2001, 75–80 (2001)

    Google Scholar 

  126. Sitti, M.: Micro- and nano-scale robotics. In: Proceedings of the 2004 American Control Conference, pp. 1–8. Boston (2004)

    Google Scholar 

  127. Srinivasan, U., Howe, R.T., Liepmann, D.: Microstructure to substrate self-assembly using capillary forces. J. Microelectromech. Syst. 10, 17–24 (2001)

    CAS  Google Scholar 

  128. Storm, A.J., Chen, J.H., Ling, X.S., Zandbergen, H.W., Dekker, C.: Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003)

    CAS  Google Scholar 

  129. Stuart, M.A.C., Huck, W.T.S., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I., Minko, S.: Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010)

    Google Scholar 

  130. Sugi, M.: Langmuir-blodgett films—A course towards molecular electronics: A review. J. Mol. Electron. 1, 3–17 (1985)

    CAS  Google Scholar 

  131. Sun, J., Simon, S.L.: The melting behavior of aluminum nanoparticles. Thermochim. Acta 463(1–2), 32–40 (2007)

    CAS  Google Scholar 

  132. Taniguchi, N.: On the basic concept of ‘nano-technology’. In: Proceedings of the International Conference Product Engineering, Part II, Society of Precision Engineering, Society of Precision Engineering, Tokyo, Japan (1974)

    Google Scholar 

  133. Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.S., Geerligs, L.J., Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature 386(6624), 474–477 (1997)

    CAS  Google Scholar 

  134. The Convention on Biological Diversity. Article 2. Use of Terms. Technical report, United Nations (1992). http://www.cbd.int/convention/text/

  135. Tristram-Nagle, S., Nagle, J.F.: Lipid bilayers: thermodynamics, structure, fluctuations, and interactions. Chem. Phys. Lipids 127(1), 3–14 (2004)

    CAS  Google Scholar 

  136. Tu, R.S., Tirrell, M.: Bottom-up design of biomimetic assemblies. Adv. Drug Delivery Rev. 56, 1537–1563 (2004)

    CAS  Google Scholar 

  137. Tumanski, S.: Thin film magnetoresistive sensors. Institute of Physics Publishers, Bristol (2001)

    Google Scholar 

  138. Tummala, R. (ed.): Fundamentals of Microsystems Packaging. McGraw-Hill, New York (2001)

    Google Scholar 

  139. Tummala, R.R., Rymaszewski, E.J., Klopfenstein, A.G. (eds.): Microelectronic Packaging Handbook, 3 vols. 2nd edn. Chapman& Hall, New York (1996)

    Google Scholar 

  140. Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)

    CAS  Google Scholar 

  141. Vaddiraju, S., Tomazos, I., Burgess, D.J., Jain, F.C., Papadimitrakopoulos, F.: Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectron. 25(7), 1553–1565 (2010)

    CAS  Google Scholar 

  142. van Blaaderen, A., Ruel, R., Wiltzius, P.: Template-directed colloidal crystallization. Nature 385, 321–324 (1997)

    Google Scholar 

  143. Verma, A., Stellacci, F.: Effect of surface properties on nanoparticle-cell interactions. Small 6(1), 12–21 (2010)

    CAS  Google Scholar 

  144. Wang, L.W.: Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010)

    Google Scholar 

  145. Wang, X.B., Huang, Y., Becker, F.F., Gascoyne, P.R.C.: A unified theory of dielectrophoresis and travelling wave dielectrophoresis. J. Phys. D Appl. Phys. 27, 1571 (1994)

    CAS  Google Scholar 

  146. Wang, Z.L.: Toward self-powered sensor networks. Nano Today 5, 512–514 (2010)

    Google Scholar 

  147. Whitesides, G., Grzybowski, B.: Self-assembly at all scales. Science 295(5564), 2418–2421 (2002)

    CAS  Google Scholar 

  148. Whitesides, G.M., Boncheva, M.: Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. USA 99(8), 4769–4774 (2002)

    CAS  Google Scholar 

  149. Whitesides, G.M., Love, J.C.: The art of building small. Sci. Am. 285(3), 32–41 (2001)

    Google Scholar 

  150. Wolf, E.L.: Nanophysics and Nanotechnology: an introduction to modern concepts in nanoscience, 2nd edn. Wiley-VCH, Weinheim (2006)

    Google Scholar 

  151. Wong, C.P., Moon, K.S., Li, Y. (eds.): Nano-Bio-Electronic. Photonic and MEMS Packaging. Springer, New York (2010)

    Google Scholar 

  152. Wu, B., Kumar, A.: Extreme ultraviolet lithography: a review. J. Vac. Sci. Technol. B 25, 1743–1761 (2007)

    Google Scholar 

  153. Yao, H.B., Fang, H.Y., Wang, X.H., Yu, S.H.: Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. Chem. Soc. Rev. 40, 3764–3785 (2011)

    CAS  Google Scholar 

  154. Yogeswaran, U., Chen, S.M.: A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8, 290–313 (2008)

    CAS  Google Scholar 

  155. Zhang, Z., Horsch, M.A., Lamm, M.H., Glotzer, S.C.: Tethered nano building blocks: toward a conceptual framework for nanoparticle self-assembly. Nano Lett. 3(10), 1341–1346 (2003)

    CAS  Google Scholar 

  156. Zhao, X.M., Xia, Y., Whitesides, G.M.: Soft lithographic methods for nano-fabrication. J. Mater. Chem. 7(7), 1069–1074 (1997)

    CAS  Google Scholar 

  157. Zhu, M.Q., Wang, L.Q., Exarhos, G.J., Li, A.D.Q.: Thermosensitive gold nanoparticles. J. Am. Chem. Soc. 126(9), 2656–2657 (2004)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Gerlach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerlach, G. (2012). Nano- and Biotechniques for Electronic Device Packaging. In: Gerlach, G., Wolter, KJ. (eds) Bio and Nano Packaging Techniques for Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28522-6_3

Download citation

Publish with us

Policies and ethics