Skip to main content

Interfacing of Biosystems

  • Chapter
  • First Online:
Bio and Nano Packaging Techniques for Electron Devices
  • 1825 Accesses

Abstract

Functionalization of technical surfaces with native biomembranes is extremely challenging because of their complex physicochemical properties with spatial differences in the nanometer range. The complexity of cellular membranes and their physiological needs are the major challenges for successful interfacing of biosy-stems. While the functionalization of technical devices with living cells is still in its infancy, a wide variety of methods has been developed to engineer surfaces with individual biomolecules. The chapter highlights approaches to functionalize surfaces with biomolecules by employing different interaction mechanisms. These can roughly be divided in physical absorption, chemical bonding and bioaffinity interactions. Well established methods are available to immobilize DNA on various planar substrates as well as on nanoparticles. Covalent binding of DNA is the preferred technique, which combines high binding strength and the option to realize a high uniformity and packing density of oligonucleotides. Various chemistries are available that allow covalent binding of oligonucleotides on gold and silica substrates. Site-specific immobilization can be achieved by the bioaffinity interaction of the streptavidin/biotin recognition system. Besides covalent and bioaffinity binding of the DNA to the substrate, physical interactions based on electrostatic interactions between a positively charged substrate and the negatively charged DNA backbone can be used. The design of functional interfaces based on proteins is more challenging due to the higher structural complexity of this class of biomolecules. Important issues are the maintenance of the structural integrity to avoid denaturation, the stable transfer of the native protein configuration, an optimized spacing between the proteins, and a defined orientation at the interface. The known immobilization routes can be classified in physically, chemically, and bioaffinity-mediated binding. Physical immobilization leads to randomly adsorbed proteins without a preferred orientation. Depending on the exposed amino acids various chemistries can be used for the covalent non-specific or site-specific immobilization of proteins. Interfacing mechanisms of proteins via bioaffinity is characterized by a preferred orientation of the reaction partners and by optional detachment of the bound proteins. The interaction of living cells with artificial microstructures is a topic of rapidly growing interest. The two major goals are (i) the direct immobilization of living cells on the surface of microelectronic devices in a biological environment, and (ii) the immobilization of living cells in a surface layer deposited on the electronic device to generate a quasi three-dimensional “natural” microenvironment that allows sensing and control by these cells. In the first approach a biologized interface can be engineered which possesses appropriate binding sites allowing a direct interaction with adhesion receptors in the cellular membrane. The second approach, which gets growing relevance for the development of whole-cell biosensors and bioactors, uses hydrogels, silica-based sol-gel techniques or layer-by-layer deposition of polyelectrolytes for embedding the living cells. The recent developments of nanoelectronic platforms will allow communication with living cells/tissues on the cellular and molecular level. The application of nanomaterials such as functionalized carbon nanotubes or silicon nanowires will have a dramatic impact for the detection limit of biosensors and their nanopackaging design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avnir, D., Coradin, T., Lev, O., Livage, J.: Recent bio-applications of sol-gel materials. J. Mater. Chem. 16(11), 1013–1030 (2006)

    Article  CAS  Google Scholar 

  2. Benke, A.: Aufbau nanoskopischer Netzwerke aus DNA und Bindeproteinen. Ph.D. Thesis, Technische Universität Dresden (2007)

    Google Scholar 

  3. Bensimon, A., Simon, A., Chiffaudel, A., Croquette, V., Heslot, F., Bensimon, D.: Alignment and sensitive detection of DNA by a moving interface. Science 265(5181), 2096–2098 (1994). doi:10.1126/science.7522347

    Article  CAS  Google Scholar 

  4. Blüher, A.: S-Schichtproteine als molekulare Bausteine zur Funktionalisierung mikroelektronischer Sensorstrukturen. Ph.D. Thesis, Technische Universität, Dresden (2008)

    Google Scholar 

  5. Böttcher, H., Soltmann, U., Mertig, M., Pompe, W.: Biocers: ceramics with incorporated microorganisms for biocatalytic, biosorptive and functional materials development. J. Mater. Chem. 14, 2176–2188 (2004)

    Article  Google Scholar 

  6. Chabria, M.: DNA/S-layer assemblies as molecular building block in nanotechnology. Technische Universität Dresden, Master’s thesis (2005)

    Google Scholar 

  7. Festag, G., Klenz, U., Henkel, T., Csáki, A., Fritzsche, W.: Biofunctionalization of nanomaterials, Biofunctionalization of metallic nanoparticles and microarrays for biomolecular detection. Wiley, New York (2005)

    Google Scholar 

  8. Goddard, J., Erickson, D.: Bioconjugation techniques for microfluidic biosensors. Anal. Bioanal. Chem. 394(2), 469–479 (2009)

    Article  CAS  Google Scholar 

  9. Jonkheijm, P., Weinrich, D., Schröder, H., Niemeyer, C., Waldmann, H.: Chemical strategies for generating protein biochips. Angew. Chem. Int. Ed. 47(50), 9618–9647 (2008)

    Article  CAS  Google Scholar 

  10. Moll, D., Huber, C., Schlegel, B., Pum, D., Sleytr, U.B., Sára, M.: S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays. Proc. Natl. Acad. Sci. USA 99(23), 14646–14651 (2002). 10.1073/pnas.232299399

    Google Scholar 

  11. Mrksich, M., Whitesides, G.M.: Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu. Rev. Biophys. Biomol. Struct. 25(1), 55–78 (1996)

    Article  CAS  Google Scholar 

  12. Noy, A., Artyukhin, A.B., Misra, N.: Bionanoelectronics with 1D materials. Materials Today 12(9), 22–31 (2009)

    Article  Google Scholar 

  13. Pompe, T., Kobe, F., Salchert, K., Jørgensen, B., Oswald, J., Werner, C.: Fibronectin anchorage to polymer substrates controls the initial phase of endothelial cell adhesion. J. Biomed. Mater. Res. 67A(2), 647–657 (2003)

    Article  CAS  Google Scholar 

  14. Pompe, T., Renner, L., Werner, C.: Nanoscale features of fibronectin fibrillogenesis depend on protein-substrate interaction and cytoskeleton structure. Biophys. J. 88(1), 527–534 (2005)

    Article  CAS  Google Scholar 

  15. Pompe, T., Starruss, J., Bobeth, M., Pompe, W.: Modeling of pattern development during fibronectin nanofibril formation. Biointerphases 1(3), 93–97 (2006). 10.1116/1.2345653

    Google Scholar 

  16. Pompe, T., Zschoche, S., Herold, N., Salchert, K., Gouzy, M.F., Sperling, C., Werner, C.: Maleic anhydride copolymers—a versatile platform for molecular biosurface engineering. Biomacromolecules 4(4), 1072–1079 (2003)

    Article  CAS  Google Scholar 

  17. Rosi, N.L., Mirkin, C.A.: Nanostructures in biodiagnostics. Chem. Rev. 105(4), 1547–1562 (2005)

    Article  CAS  Google Scholar 

  18. Rusmini, F., Zhong, Z., Feijen, J.: Protein immobilization strategies for protein biochips. Biomacromolecules 8(6), 1775–1789 (2007)

    Article  CAS  Google Scholar 

  19. Smith, J.P.: Medical and biological sensors: a technical and commercial review. Sens. Rev. 24(4), 241–245 (2005)

    Article  Google Scholar 

  20. Soltmann, U., Böttcher, H.: Utilization of sol-gel ceramics for the immobilization of living microorganisms. J. Sol-Gel Sci. Technol. 48(1), 66–72 (2008)

    Article  CAS  Google Scholar 

  21. Wang, Y., Angelatos, A.S., Caruso, F.: Template synthesis of nanostructured materials via layer-by-layer assembly. Chem. Mater. 20(3), 848–858 (2008)

    Article  CAS  Google Scholar 

  22. Werner, C., Pompe, T., Salchert, K.: Modulating extracellular matrix at interfaces of polymeric materials. Adv. Polym. Sci. 203, 63–93 (2006)

    Article  CAS  Google Scholar 

  23. Wersing, D.: Personal communication (2009). Technische Universität Dresden, Dresden

    Google Scholar 

  24. Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., Lieber, C.M.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotech. 23(10), 1294–1301 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Rödel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rödel, G., Pompe, W. (2012). Interfacing of Biosystems. In: Gerlach, G., Wolter, KJ. (eds) Bio and Nano Packaging Techniques for Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28522-6_17

Download citation

Publish with us

Policies and ethics