Skip to main content

Ink-Jet Printing of Conductive Nanostructures

  • Chapter
  • First Online:
Bio and Nano Packaging Techniques for Electron Devices
  • 1896 Accesses

Abstract

This chapter refers to the ink-jet printing process of different types of conducting inks. Ink-jet printing is a contactless, digital and additive deposition method. Although the throughput is not as high as other techniques (e.g. gravure or offset printing) ink-jet printing becomes more and more popular. Printing of conducting structures is one step of producing complex microsystems. Therefor the printing process and the annealing temperature of the conductive inks have to be optimized. Different approached are described in this chapter to realize a low cost ink-jet printing process on flexible substrate materials. Also a new type of ink is introduced to achieve low sintering temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colsmann, A., Stenzel, F., Balthasar, G., Do, H., Lemmer, U.: Plasma patterning of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) anodes for efficient polymer solar cells. Thin Solid Films 517(5), 1750–1752 (2009)

    Article  CAS  Google Scholar 

  2. Dong, A.G., Wang, Y.J., Tang, Y., Ren, N., Yang, W.L., Gao, Z.: Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction. Chem. Commun. 4, 350–351 (2002). doi: 10.1039/B110164C

    Google Scholar 

  3. Fox, T.G.: Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phys. Soc. 1, 123–128 (1956)

    CAS  Google Scholar 

  4. Fujifilm Dimatix, Inc.: Dimatix Materials Printer DMP-2800. http://www.dimatix.com/divisions/materials-deposition-division/printer_cartridge.asp. Accessed 30 June 2010

  5. Fuller, S.B., Wilhelm, E.J., Jacobson, J.M.: Ink-jet printed nanoparticle microelectromechanical systems. J. Microelectromech. Syst. 11(1), 54–60 (2002)

    Google Scholar 

  6. Gans, B.J., Duineveld, P., Schubert, U.: Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16(3), 203–213 (2004)

    Article  Google Scholar 

  7. Hostetler, M.J., Wingate, J.E., Zhong, C.J., Harris, J.E., Vachet, R.W., Clark, M.R., Londono, J.D., Green, S.J., Stokes, J.J., Wignall, G.D., Glish, G.L., Porter, M.D., Evans, N.D., Murray, R.W.: Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14(1), 17–30 (1998). doi: 10.1021/la970588w

    Google Scholar 

  8. Ji, T., Lirtsman, V.G., Avny, Y., Davidov, D.: Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads. Adv. Mater. 13(16), 1253–1256 (2001)

    Article  CAS  Google Scholar 

  9. Pich, A., Bhattacharya, S., Adler, H.J.P.: Composite magnetic particles: 1. Deposition of magnetite by heterocoagulation method. Polymer 46(4), 1077–1086 (2005)

    Article  CAS  Google Scholar 

  10. Rozenberg, G.G., Steinke, J.H.G., Gelbrich, T., Hursthouse, M.B.: Synthesis and spectroscopic studies of novel \(\beta \)-diketonate copper(i) compounds and solid state structure of tetravinylsilane tetrakis copper(i) 1,1,1,5,5,5-hexafluoroacetylacetonate (TVST[Cu]hfac). Organometallics 20(19), 4001–4005 (2001). doi: 10.1021/om010268e

    Article  CAS  Google Scholar 

  11. Shon, Y.S., Cutler, E.: Aqueous synthesis of alkanethiolate-protected Ag nanoparticles using bunte salts. Langmuir 20(16), 6626–6630 (2004). doi:10.1021/la049417z

    Article  CAS  Google Scholar 

  12. Szczech, J., Megaridis, C., Zhang, J., Gamota, D.: Ink jet processing of metallic nanoparticle suspensions for electronic circuitry fabrication. Nanoscale Microscale Thermophys. Eng. 8, 327–339 (2004)

    CAS  Google Scholar 

  13. Teng, K.F., Vest, R.W.: Metallization of solar cells with ink jet printing and silver metallo-organic inks. IEEE Trans Compon. Hybrids Manuf. Technol. 11(3), 291–297 (1988)

    Google Scholar 

  14. Türke, A.: Synthese von Silberhybridpartikeln als elektrisch leitfähige Tinten für den Ink-Jet Druck von leitfähigen Strukturen. Ph.D. Thesis, Technische Universität Dresden (2010)

    Google Scholar 

  15. Turkevich, J., Cooper, P.S., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951)

    Article  Google Scholar 

  16. Xu, T., Jin, J., Gregory, C., Hickman, J.J., Boland, T.: Inkjet printing of viable mammalian cells. Biomaterials 26(1), 93–99 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Türke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Türke, A. (2012). Ink-Jet Printing of Conductive Nanostructures. In: Gerlach, G., Wolter, KJ. (eds) Bio and Nano Packaging Techniques for Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28522-6_14

Download citation

Publish with us

Policies and ethics