Skip to main content

The Dual Pathway of Nevogenesis

  • Chapter
  • First Online:
Nevogenesis

Abstract

The evolution of melanocytic nevi is a complex, multifactorial process involving both constitutional and environmental factors. While histopathology remains the gold standard for diagnosis of melanocytic lesions, it is a mere cross-sectional view of nevus evolution at one point in time. Dermoscopy and more recently, reflectance confocal microscopy (RCM) are in vivo diagnostic techniques for the assessment of morphologic features of nevi; the fact that most dermoscopic features are well correlated with histopathologic criteria makes these methods valuable for observing gross tissue changes of nevi over time without need to biopsy (Table 4.1). Thus, dermoscopy and RCM have enriched profoundly our knowledge about the morphological variability of nevi and offered new insights into their evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackerman AB, Magana-Garcia M. Naming acquired melanocytic nevi. Unna’s, Miescher’s, Spitz’s Clark’s. Am J Dermatopathol. 1990;12:193–209.

    Article  PubMed  CAS  Google Scholar 

  2. Alexeev V, Yoon K. Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. J Invest Dermatol. 2006;126:1102–10.

    Article  PubMed  CAS  Google Scholar 

  3. Argenziano G, Zalaudek I, Ferrara G, et al. Proposal of a new classification system for melanocytic naevi. Br J Dermatol. 2007;157:217–27.

    Article  PubMed  CAS  Google Scholar 

  4. Bastian BC, LeBoit PE, Pinkel D. Mutations and copy number increase of HRAS in spitz nevi with distinctive histopathological features. Am J Pathol. 2000;157(3):967–72.

    Article  PubMed  CAS  Google Scholar 

  5. Bauer J, Curtin JA, Pinkel D, Bastian BC. Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol. 2007;127(1):179–82.

    Article  PubMed  CAS  Google Scholar 

  6. Blokx WA, van Dijk MC, Ruiter DJ. Molecular cytogenetics of cutaneous melanocytic lesions - diagnostic, prognostic and therapeutic aspects. Histopathology. 2010;56:121–32.

    Article  PubMed  Google Scholar 

  7. Changchien L, Dusza SW, Agero AL. Age- and site-specific variation in the dermoscopic patterns of congenital melanocytic nevi: an aid to accurate classification and assessment of melanocytic nevi. Arch Dermatol. 2007;143:1007–14.

    Article  PubMed  Google Scholar 

  8. Clemmensen OJ, Kroon S. The histology of “congenital features” in early acquired melanocytic nevi. J Am Acad Dermatol. 1988;19(4):742–6.

    Article  PubMed  CAS  Google Scholar 

  9. Cohen LM, Bennion SD, Johnson TW, Golitz LE. Hyper-melanotic nevus: clinical, histopathologic, and ultrastructural features in 316 cases. Am J Dermatopathol. 1997;19:23–30.

    Article  PubMed  CAS  Google Scholar 

  10. Cramer SF. The origin of epidermal melanocytes. Implications for the histogenesis of nevi and melanomas. Arch Pathol Lab Med. 1991;115(2):115–9.

    Article  PubMed  CAS  Google Scholar 

  11. Cramer SF. Speckled lentiginous nevus (nevus spilus): the “roots” of the “melanocytic garden”. Arch Dermatol. 2001;137:1654–5.

    Article  PubMed  CAS  Google Scholar 

  12. Cribier BJ, Santinelli F, Grosshans E. Lack of clinical-pathological correla- tion in the diagnosis of congenital na- evi. Br J Dermatol. 1999;141:1004–9.

    Article  PubMed  CAS  Google Scholar 

  13. Dadzie OE, Goerig R, Bhawan J. Incidental microscopic foci of nevic aggregates in skin. Am J Dermatopathol. 2008;30:45–50.

    Article  PubMed  Google Scholar 

  14. Gleason BC, Crum CP, Murphy GF. Expression patterns of MITF during human cutaneous embryogenesis: evidence for bulge epithelial expression and persistence of dermal melanoblasts. J Cutan Pathol. 2008;35:615–22.

    Article  PubMed  Google Scholar 

  15. Gray-Schopfer VC, Cheong SC, Chong H, et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer. 2006;95:496–505.

    Article  PubMed  CAS  Google Scholar 

  16. Hafner C, Stoehr R, van Oers JM, et al. The absence of BRAF, FGFR3, and PIK3CA mutations differentiates lentigo simplex from melanocytic nevus and solar lentigo. J Invest Dermatol. 2009;129:2730–5.

    Article  PubMed  CAS  Google Scholar 

  17. Halpern AC, Guerry 4th D, Elder DE, Trock B, Synnestvedt M, Humphreys T. Natural history of dysplastic nevi. J Am Acad Dermatol. 1993;40:51–7.

    Article  Google Scholar 

  18. Horikawa T, Norris DA, Yohn JJ, et al. Melanocyte mitogens induce both melanocyte chemokinesis and chemotaxis. J Invest Dermatol. 1995;104:256–9.

    Article  PubMed  CAS  Google Scholar 

  19. Houben R, Ortmann S, Drasche A, et al. Proliferation arrest in B-Raf mutant melanoma cell lines upon MAPK pathway activation. J Invest Dermatol. 2009;129:406–14.

    Article  PubMed  CAS  Google Scholar 

  20. Ichii-Nakato N, Takata M, Takayanagi S, et al. High frequency of BRAFV600E mutation in acquired nevi and small congenital nevi, but low frequency of mutation in medium-sized congenital nevi. J Invest Dermatol. 2006;126:2111–8.

    Article  PubMed  CAS  Google Scholar 

  21. Kincannon J, Boutzale C. The physiology of pigmented nevi. Pediatrics. 1999;104:1042–5.

    PubMed  CAS  Google Scholar 

  22. Kittler H, Seltenheim M, Dawid M, et al. Frequency and characteristics of enlarging common melanocytic nevi. Arch Dermatol. 2000;136:316–20.

    Article  PubMed  CAS  Google Scholar 

  23. Kopf AW, Levine LJ, Rigel DS, Fried-man RJ, Levenstein M. Prevalence of congenital nevus-like nevi, nevi spili, and cafe au lait spots. Arch Dermatol. 1985;121(6):766–9.

    Article  PubMed  CAS  Google Scholar 

  24. Kumar R, Angelini S, Snellman E, Hemminki K. BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol. 2004;122:342–8.

    Article  PubMed  CAS  Google Scholar 

  25. Lieb JA, Scope A, Dusza SW, et al. The dermoscopic pattern of truncal nevi may mirror the surrounding skin pigment pattern. J Am Acad Dermatol. 2007; 56: AB144.

    Article  PubMed  CAS  Google Scholar 

  26. Lin J, Takata M, Murata H, et al. Polyclonality of BRAF mutations in acquired melanocytic nevi. J Natl Cancer Inst. 2009;101:1423–7.

    Article  PubMed  CAS  Google Scholar 

  27. Loewe R, Kittler H, Fischer G, et al. BRAF kinase gene V599E mutation in growing melanocytic lesions. J Invest Dermatol. 2004;123:733–6.

    Article  PubMed  CAS  Google Scholar 

  28. Martinka M, Bruecks AK, Trotter MJ. Histologic spectrum of melanocytic nevi removed from patients  >  60 years of age. J Cutan Med Surg. 2007;11(5):168–73.

    PubMed  Google Scholar 

  29. Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-Associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436:720–4.

    Article  PubMed  CAS  Google Scholar 

  30. Nguyen LP, Emley A, Wajapeyee N, Green MR, Mahalingam M. BRAF V600E mutation and the tumour suppressor IGFBP7 in atypical genital naevi. Br J Dermatol. 2010;162(3):677–80. Epub 2009 Nov 16.

    Article  PubMed  CAS  Google Scholar 

  31. Pellacani G, Scope A, Ferrari B, et al. New insights into nevogenesis: in vivo characterization and follow-up of melanocytic nevi by reflectance confocal microscopy. J Am Acad Dermatol. 2009;61:1001–13.

    Article  PubMed  Google Scholar 

  32. Piliouras P, Gilmore S, Wurm EM, Soyer HP, Zalaudek I. New insights in naevogenesis: number, distribution and dermoscopic patterns of naevi in the elderly. Australas J Dermatol. 2011;52(4):254–8.

    Article  PubMed  Google Scholar 

  33. Seidenari S, Pellacani G, Martella A, et al. Instrument-, age- and site-dependent variations of dermoscopic patterns of congenital melanocytic naevi: a multicentre study. Br J Dermatol. 2006;155:56–61.

    Article  PubMed  CAS  Google Scholar 

  34. Scope A, Marghoob AA, Dusza SW, et al. Dermoscopic patterns of naevi in fifth grade children of the Framingham school system. Br J Dermatol. 2008;158:1041–9.

    Article  PubMed  CAS  Google Scholar 

  35. Scope A, Dusza SW, Marghoob AA, Satagopan JM, Braga Casagrande Tavoloni J, Psaty EL, Weinstock MA, Oliveria SA, Bishop M, Geller AC, Halpern AC. Clinical and dermoscopic stability and volatility of melanocytic nevi in a population-based cohort of children in Framingham school system. J Invest Dermatol. 2011;131(8):1615–21.

    Article  PubMed  CAS  Google Scholar 

  36. Soyer HP, Smolle J, Hodl S, Pachernegg H, Kerl H. Surface microscopy. A new approach to the diagnosis of cutaneous pigmented tumors. Am J Dermatopathol. 1989;11:1–10.

    Article  PubMed  CAS  Google Scholar 

  37. Sowa J, Kobayashi H, Ishii M, Kimura T. Histopathologic findings in Unna’s nevus suggest it is a tardive congenital nevus. Am J Dermatopathol. 2008;30(6):561–6.

    Article  PubMed  Google Scholar 

  38. Takata M, Murata H, Saida T. Molecular pathogenesis of malignant melanoma: a different perspective from the studies of melanocytic nevus and acral melanoma. Pigment Cell Melanoma Res. 2010;23:64–71.

    Article  PubMed  CAS  Google Scholar 

  39. Terushkin V, Scope A, Halpern AC, Marghoob AA. Pathways to involution of nevi: insights from dermoscopic follow-up. Arch Dermatol. 2010;146:459–60.

    Article  PubMed  Google Scholar 

  40. Thomas AJ, Erickson CA. The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res. 2008;21(6):598–610.

    Article  PubMed  CAS  Google Scholar 

  41. Thomas NE. BRAF somatic mutations in malignant melanoma and melanocytic naevi. Melanoma Res. 2006;16:97–103.

    Article  PubMed  CAS  Google Scholar 

  42. Unna PG. Berl Klin Wochenschr. 1893;30:14–6.

    Google Scholar 

  43. van Engen-van Grunsven AC, van Dijk MC, Ruiter DJ, Klaasen A, Mooi WJ, Blokx WA. HRAS-mutated Spitz tumors: a subtype of Spitz tumors with distinct features. Am J Surg Pathol. 2010;34(10):1436–41.

    Article  PubMed  Google Scholar 

  44. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien JM, Simpson EM, Barsh GS, Bastian BC. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457(7229):599–602.

    Article  PubMed  Google Scholar 

  45. Westhafer J, Gildea J, Klepeiss S, et al. Age distribution of biopsied junctional nevi. J Am Acad Dermatol. 2007;56(5):825–7.

    Article  PubMed  Google Scholar 

  46. Witt C, Krengel S. Clinical and epidemiological aspects of subtypes of melanocytic nevi (Flat nevi, Miescher nevi, Unna nevi). Dermatol Online J. 2010;15:16–1.

    Google Scholar 

  47. Worret WI, Burgdorf WH. Which di- rection do nevus cells move? abtrop- fung reexamined. Am J Dermatopathol. 1998;20:135–9.

    Article  PubMed  CAS  Google Scholar 

  48. Wu J, Rosenbaum E, Begum S, Westra WH. Distribution of BRAF T1799A(V600E) mutations across various types of benign nevi: implications for melanocytic tumorigenesis. Am J Dermatopathol. 2007;29:534–7.

    Article  PubMed  Google Scholar 

  49. Yadav S, Vossaert KA, Kopf AW, Silver-man M, Grin-Jorgensen C. Histopa- thologic correlates of structures seen on dermoscopy (epiluminescence micros- copy). Am J Dermatopathol. 1993;15:297–305.

    Article  PubMed  CAS  Google Scholar 

  50. Zalaudek I, Argenziano G, Ferrara G, Soyer HP, Corona R, Sera F, Cerroni L, Carbone A, Chiominto A, Cicale L, De Rosa G, Ferrari A, Hofmann-Wellenhof R, Malvehy J, Peris K, Pizzichetta MA, Puig S, Scalvenzi M, Staibano S, Ruocco V. Clinically equivocal melanocytic skin lesions with features of regression: a dermoscopic-pathological study. Br J Dermatol. 2004;150:64–71.

    Article  PubMed  CAS  Google Scholar 

  51. Zalaudek I, Donati P, Catricalà C, Argenziano G. “Dying nevus” or regressing melanoma. Hautarzt. 2011;62:293–6.

    Article  PubMed  CAS  Google Scholar 

  52. Zalaudek I, Guelly C, Pellacani G, Hofmann-Wellenhof R, Trajanoski S, Kittler H, Scope A, Marghoob AA, Longo C, Leinweber B, Ferrara G, Saida T, Grichnik JM, Argenziano G, Becker JC. The dermoscopical and histopathological patterns of nevi correlate with the frequency of BRAF mutations. J Invest Dermatol. 2011;131(2):542–5.

    Article  PubMed  CAS  Google Scholar 

  53. Zalaudek I, Grinschgl S, Argenziano G, et al. Age-related prevalence of dermoscopy patterns in acquired melanocytic naevi. Br J Dermatol. 2006;154:299–304.

    Article  PubMed  CAS  Google Scholar 

  54. Zalaudek I, Hofmann-Wellenhof R, Kittler H, et al. A dual concept of nevogenesis: theoretical considerations based on dermoscopic features of melanocytic nevi. J Dtsch Dermatol Ges. 2007;5:985–92.

    Article  PubMed  Google Scholar 

  55. Zalaudek I, Leinweber B, Hofmann-Wellenhof R, et al. The epidermal and dermal origin of melanocytic tumors: theoretical considerations based on epidemiologic, clinical, and histopathologic findings. Am J Dermatopathol. 2008;30:403–6.

    Article  PubMed  Google Scholar 

  56. Zalaudek I, Schmid K, Marghoob AA, Scope A, Manzo M, Moscarella E, Malvehy J, Puig S, Pellacani G, Thomas L, Catricalà C, Argenziano G. Frequency of dermoscopic nevus subtypes by age and body site: a cross-sectional study. Arch Dermatol. 2011;147(6):663–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer- Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zalaudek, I. et al. (2012). The Dual Pathway of Nevogenesis. In: Marghoob, A. (eds) Nevogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28397-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28397-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28396-3

  • Online ISBN: 978-3-642-28397-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics