Skip to main content

Divergent Role of 68Ga-Labeled Somatostatin Analogs in the Workup of Patients with NETs: AIIMS Experience

  • Conference paper
  • First Online:
Theranostics, Gallium-68, and Other Radionuclides

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 194))

Abstract

Neuroendocrine tumors (NETs) encompass a wide range of rare and heterogeneous neoplasms arising from the neural crest. Diagnosis of NETs is conventionally done by a combination of common clinical symptoms and biochemical evidence of hormonal excess, which these tumors are known to secrete. After a diagnosis of NET is established, a search for its localization is carried out using common morphologic imaging methods such as ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI). The main problem with structural imaging is, however, its inability to distinguish between endocrine and exocrine lesions. Functional imaging of NETs started with use of iodine-131-meta-iodobenzylguanidine (131I-MIBG) and has come a long way since. From accurate demonstration of functioning tumors to detection of small and occult lesions, functional imaging has penetrated almost every aspect of NET management. Procedures such as 131/123I-MIBG, 111In-Octreoscan and others are rapidly giving way to use of PET/CT based on the superior resolution of the system and the availability of target-specific positron-emitting radiotracers. The availability of 68Ga from generator-based radionuclide systems, namely 68Ge/68Ga generators, opened up a new era of molecular imaging for NETs. A multitude of somatostatin analogs can be easily radioliganded with 68Ga using heterocyclic macromolecular bifunctional chelating systems for targeted diagnosis of somatostatin receptor-expressing tumors, used most effectively to date for detection of NETs. This chapter focuses on our experience at the All India Institute of Medical Sciences, New Delhi regarding the divergent roles of 68Ga-labeled somatostatin analogs in the workup of patients with NETs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams S, Baum R, Rink T, Schumm-Dräger PM, Usadel KH, Hör G (1998) Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumors. Eur J Nucl Med 25:79–83

    Article  PubMed  CAS  Google Scholar 

  • Ambrosini V, Campana D, Bodei L et al (2010) 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J Nucl Med 51:669–673

    Article  PubMed  Google Scholar 

  • Belhocine T, Foidart J, Rigo P, Najjar F, Thiry A, Quatresooz P, Hustinx R (2002) Fluorodeoxyglucose positron emission tomography and somatostatin receptor scintigraphy for diagnosing and staging carcinoid tumors: correlations with the pathological indexes p53 and Ki-67. Nucl Med Commun 23:727–734

    Article  PubMed  CAS  Google Scholar 

  • Bergholm U, Adami HO, Bergstrom R et al (1989) Clinical characteristics in sporadic and familial medullary thyroid carcinoma: a nationwide study of 249 patients in Sweden from 1959 through 1981. Cancer 63:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Binderup T, Knigge U, Loft A, Mortensen J, Pfeifer A, Federspie B et al (2010) Functional imaging of neuroendocrine tumors: A head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG Scintigraphy, and 18F-FDG PET. J Nucl Med 51:704–712

    Article  PubMed  Google Scholar 

  • Bodei L, Ferone D, Grana CM et al (2009) Peptide receptor therapies in neuroendocrine tumors. J Endocrinol Invest 32:360–369

    PubMed  CAS  Google Scholar 

  • Brambilla E, Travis WD, Colby TV, Corrin B, Shimosato Y (2001) The new World Health Organization classification of lung tumors. Eur Respir J 18:1059–1068

    Article  PubMed  CAS  Google Scholar 

  • Brandt MK, Muller SP, Gorges R, Saller B, Bockisch A (2000) The value of fluorine-18 fluorodeoxyglucose PET in patients with medullary thyroid cancer. Eur J Nucl Med 27:490–496

    Article  Google Scholar 

  • Bravo EL (1994) Evolving concepts in the pathophysiology, diagnosis and treatment of pheochromocytoma. Endocr Rev 15:356–368

    PubMed  CAS  Google Scholar 

  • Brendon GC, Nikolaos DP, Prakash V, Kayani I, Caplin M, Mahmood S et al (2010) Comparison of 68Ga-DOTATATE and 18F-fluorodeoxyglucose PET/CT in the detection of recurrent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 37:49–57

    Article  Google Scholar 

  • Calender A (2000) Molecular genetics of neuroendocrine tumors. Digestion 62(Suppl 1):3–18

    Article  PubMed  CAS  Google Scholar 

  • Campana D, Ambrosini V, Pezzilli R, Fanti S, Labate AMM, Santini D et al (2010) Standardized uptake values of 68Ga-DOTANOC PET: a promising prognostic tool in neuroendocrine tumors. J Nucl Med 51:353–359

    Article  PubMed  Google Scholar 

  • Capella C, Riva C, Cornaggia M et al (1988) Histopathology, cytology and cytochemistry of pheochromocytomas and paragangliomas including chemodectomas. Path Res Pract 183:176–187

    Article  PubMed  CAS  Google Scholar 

  • Castellucci P, Ucha JP, Fuccio C, Rubello D, Ambrosini V, Montini GC et al (2011) Incidence of increased 68Ga-DOTANOC uptake in the pancreatic head in a large series of extrapancreatic NET patients studied with sequential PET/CT. J Nucl Med 52:886–890

    Article  PubMed  Google Scholar 

  • Connor CS, Hermreck AS, Thomas JH (1988) Pitfalls in the diagnosis of pheochromocytoma. Am Surg 54:634–636

    PubMed  CAS  Google Scholar 

  • Diehl M, Risse JH, Brandt-Mainz K et al (2001) Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study. Eur J Nucl Med 28:1671–1676

    Article  PubMed  CAS  Google Scholar 

  • Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H (1997) Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 24:1342–1348

    Article  PubMed  CAS  Google Scholar 

  • Dralle H, Damm I, Scheumann GF, Kotzerke J, Kupsch E (1992) Frequency and significance of cervicomediastinal lymph node metastases in medullary thyroid carcinoma: results of a compartment-oriented microdissection method. Henry Ford Hosp Med J 40:264–267

    PubMed  CAS  Google Scholar 

  • Elisei R, Bottici V, Luchetti F, Di Coscio G, Romei C, Grasso L et al (2004) Impact of routine measurement of serum calcitonin on the diagnosis and outcome of medullary thyroid cancer: experience in 10,864 patients with nodular thyroid disorders. J Clin Endocrinol Metab 89:163–168

    Article  PubMed  CAS  Google Scholar 

  • Ezziddin S, Logvinski T, Yong-Hing C, Ahmadzadehfar H, Fischer HP, Palmedo H et al (2006) Factors predicting tracer uptake in somatostatin receptor and MIBG scintigraphy of metastatic gastroenteropancreatic neuroendocrine tumors. J Nucl Med 47:223–233

    PubMed  CAS  Google Scholar 

  • Fischer L, Kleeff J, Esposito I et al (2008) Clinical outcome and long-term survival in 118 consecutive patients with neuroendocrine tumors of the pancreas. Br J Surg 95(5):627–635

    Article  PubMed  CAS  Google Scholar 

  • Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr 3 -octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Biersack H, Ezziddin S, Logvinski T, An R (2004) The role of combined imaging in metastatic medullary thyroid carcinoma: 111In-DTPA-octreotide and 131I/123I-MIBG as predictors for radionuclide therapy. J Cancer Res Clin Oncol 130:649–656

    Article  PubMed  Google Scholar 

  • Gifford RW Jr, Manger WM, Bravo EL (1994) Pheochromocytoma. Endocrinol Metab Clin North Am 23:387–404

    PubMed  Google Scholar 

  • Grossman AB, Kelly P, Rockall A, Bhattacharya S, McNicol A, Barwick T (2006) Cushing’s syndrome caused by an occult source: difficulties in diagnosis and management. Nat Clin Pract Endocrinol Metab 2:642–647

    Article  PubMed  Google Scholar 

  • Grufferman S, Gillman MW, Pasternak LR et al (1980) Familial carotid body tumors: case report and epidemiologic review. Cancer 46:2116–2122

    Article  PubMed  CAS  Google Scholar 

  • Hainsworth JD, Spigel DR, Litchy S, Greco FA (2006) Phase II trial of paclitaxel, carboplatin, and etoposide in advanced poorly differentiated neuro-endocrine carcinoma: a minnie pearl cancer research network study. J Clin Oncol 24:3548–3554

    Article  PubMed  CAS  Google Scholar 

  • Harrison A, Walker CA, Parker D, Jankowski KJ, Cox JPL, Craig AS et al (1991) The in vivo release of 90Y from cyclic and acyclic ligand-antibody conjugates. Int J Radiat Appl Instrum B 18(5):469–476

    Article  CAS  Google Scholar 

  • Hawkins RA (1995) Pancreatic tumors: imaging with PET. Radiology 195:320

    PubMed  CAS  Google Scholar 

  • Heppeler A, Froidevaux S, Mäcke HR, Jermann E, Behe M, Powell P (1999) Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy. Chem Eur J 5:1974–1981

    Article  CAS  Google Scholar 

  • Hoegerle S, Nitzsche E, Altehoefer C et al (2002) Pheochromocytomas: detection with 18F DOPA whole-body PET—initial results. Radiology 222:507–512

    Article  PubMed  Google Scholar 

  • Ilias I, Torpy DJ, Pacak K, Mullen N, Wesley RA, Nieman LK (2005) Cushing’s syndrome due to ectopic corticotropin secretion: twenty years’ experience at the National Institutes of Health. J Clin Endocrinol Metab 90:4955–4962

    Article  PubMed  CAS  Google Scholar 

  • Isidori AM, Kaltsas GA, Pozza C, Frajese V, Newell-Price J, Reznek RH, Jenkins PJ, Monson JP, Grossman AB, Besser GM (2006) The ectopic adrenocorticotropin syndrome: clinical features, diagnosis, management, and long-term follow-up. J Clin Endocrinol Metab 91:371–377

    Article  PubMed  CAS  Google Scholar 

  • Jindal T, Kumar A, Venkitaraman B, Meena M, Kumar R, Malhotra A, Dutta R (2011) Evaluation of the role of [18F]FDG-PET/CT and [68Ga]DOTATOC-PET/CT in differentiating typical and atypical pulmonary carcinoids. Cancer Imaging Jun 15(11):70–75

    Article  Google Scholar 

  • Kaemmerer D, Peter L, Lupp A, Schulz S, Sänger J, Prasad V et al (2011) Molecular imaging with (68) Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumors. Eur J Nucl Med Mol Imaging 38:1659–1668

    Article  PubMed  CAS  Google Scholar 

  • Kaltsas GA, Mukherjee JJ, Grossman AB (2001) The value of radiolabelled MIBG and octreotide in the diagnosis and management of neuroendocrine tumors. Ann Oncol 12(Suppl 2):S47–S50

    Google Scholar 

  • Kaltsas G, Rockall A, Papadogias D, Reznek R, Grossman AB (2004) Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumors. Eur J Endocrinol 151:15–27

    Article  PubMed  CAS  Google Scholar 

  • Kayani I, Bomanji JB, Groves A et al (2008) Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1, Tyr3-octreotate) and 18F-FDG. Cancer 112:2447–2455

    Article  PubMed  Google Scholar 

  • Kayani I, Conry BG, Groves AM, Win T, Dickson J, Caplin M et al (2009) A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med 50:1927–1932

    Article  PubMed  Google Scholar 

  • Khafagi FA, Shapiro B, Fig LM et al (1989) Labetalol reduces 131I MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med 30:481–489

    PubMed  CAS  Google Scholar 

  • Kimura N, Miura W, Noshiro T, Miura Y, Ookuma Y, Nagura H (1994) Ki-67 is an indicator of progression of neuroendocrine tumors. Endocr Pathol 5:223–228

    Article  Google Scholar 

  • Kliewer KE, Wen DR, Cancilla PA et al (1989) Paragangliomas: assessment of prognosis by histologic, immunohistochemical, and ultrastructural techniques. Hum Pathol 20:29–39

    Article  PubMed  CAS  Google Scholar 

  • Kloppel G, Perren A, Heitz PU (2004) The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann N Y Acad Sci 1014:13–27

    Article  PubMed  Google Scholar 

  • Krausz Y, Bar-Ziv J, de Jong R et al (1998) Somatostatin receptor scintigraphy in the management of gastro enteropancreatic tumors. Am J Gastroenterol 93:66–70

    Article  PubMed  CAS  Google Scholar 

  • Krenning EP, Kwekkeboom DJ, Bakker WH et al (1993) Somatostatin receptor scintigraphy with [111 In-DTPA-D Phe1]- and [123 I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 20:716–731

    Article  PubMed  CAS  Google Scholar 

  • Kudva YC, Sawka AM, Young WF Jr (2003) Clinical review 164: the laboratory diagnosis of adrenal pheochromocytoma—the Mayo Clinic experience. J Clin Endocrinol Metab 88:4533–4539

    Article  PubMed  CAS  Google Scholar 

  • Lack EE, Cubilla AL, Woodruff JM (1979) Paragangliomas of the head and neck region. A pathologic study of tumors from 71 patients. Hum Pathol 10:191–218

    Article  PubMed  CAS  Google Scholar 

  • Lamberts SWJ, Hofland LJ, van Koetsueld PM et al (1990) Parallel in vivo and in vitro detection of functional somatostatin receptors in human endocrine pancreatic tumors: consequences with regard to diagnosis, localization and therapy. J Clin Endocrinol Metab 71:566–574

    Article  PubMed  CAS  Google Scholar 

  • Lamberts SWJ, Krenning EP, Reubi JC (1991) The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr Rev 12:450–482

    Article  PubMed  CAS  Google Scholar 

  • Lamberts SW, Hofland LJ, Nobels FR (2001) Neuroendocrine tumor markers. Front Neuroendocrinol 22:309–339

    Article  PubMed  CAS  Google Scholar 

  • Langer P, Kann PH, Fendrich V, Richter G, Diehl S, Rothmund M et al (2004) Prospective evaluation of imaging procedures for the detection of pancreaticoduodenal endocrine tumors in patients with multiple endocrine neoplasia type 1. World J Surg 28:1317–1322

    Article  PubMed  Google Scholar 

  • Leboulleux S, Baudin E, Travagli JP, Schlumberger M (2004) Medullary thyroid carcinoma. Clin Endocrinol (Oxf) 61:299–310

    Article  Google Scholar 

  • Lee CS (1996) Differences in cell proliferation and prognostic significance of proliferating cell nuclear antigen and Ki-67 antigen immunoreactivity in in situ and invasive carcinomas of the extrahepatic biliary tract. Cancer 78:1881–1887

    Article  PubMed  CAS  Google Scholar 

  • Mäcke HR, Good S (2003) Radiometals (non-Tc, non-Re) and bifunctional labeling chemistry. In: Vértes A, Nagy S, Klencsár Z (eds) Handbook of nuclear chemistry. Amsterdam, 4: 279–314

    Google Scholar 

  • Maecke HR, Hofmann M, Haberkorn U (2005) 68Ga-labeled peptides in tumor imaging. J Nucl Med 46(suppl 1):172S–178S

    PubMed  CAS  Google Scholar 

  • Manger WM, Gifford RW (1995) Pheochromocytoma: a clinical overview. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis and management. Raven, New York, pp 225–244

    Google Scholar 

  • Mantero F, Massimo T, Arnoldi G et al (2000) A survey on adrenal incidentaloma in Italy. J Clin Endocrinol Metab 85:637–644

    Article  PubMed  CAS  Google Scholar 

  • Marsh DJ, Learoyd DL, Robinson BG (1995) Medullary thyroid carcinoma: recent advances and management update. Thyroid 5:407–424

    Article  PubMed  CAS  Google Scholar 

  • Miederer M, Seidl S, Buck A, Scheidhauer K, Wester HJ, Schwaiger M, Perren A (2009) Correlation of immunohistopathological expression of somatostatin receptor 2 with standardised uptake values in 68Ga-DOTATOC PET/CT. Eur J Nucl Med Mol Imaging 36(1):48–52

    Article  PubMed  CAS  Google Scholar 

  • Moertel CG, Kvols LK, O’Connell MJ, Rubin J (1991) Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin: evidence of major therapeutic activity in the anaplastic variants of these neoplasms. Cancer 68:227–232

    Article  PubMed  CAS  Google Scholar 

  • Morandi U, Casali C, Rossi G (2006) Bronchial typical carcinoid tumors. Semin Thorac Cardiovasc Surg 18:191–198

    Article  PubMed  Google Scholar 

  • Moreira SG Jr, Pow-Sang JM (2002) Evaluation and management of adrenal masses. Cancer Control 9:326–334

    PubMed  Google Scholar 

  • Musholt TJ, Musholt PB, Dehdashti F, Moley JF (1997) Evaluation of fluorodeoxyglucose-positron emission tomographic scanning and its association with glucose transporter expression in medullary thyroid carcinoma and pheochromocytoma: a clinical and molecular study. Surgery 122:1049–1060

    Article  PubMed  CAS  Google Scholar 

  • Naswa N, Sharma P, Kumar A, Nazar AH, Kumar R, Chumber S, Bal C (2011) Gallium-68-DOTA-NOC PET/CT of patients with gastroenteropancreatic neuroendocrine tumors: A prospective single-center study. AJR 197:1–8

    Google Scholar 

  • Naswa N, Sharma P, Sudhir Suman KC, Lata S, Kumar R, Malhotra A, C Bal (2012) Prospective evaluation of 68Ga-DOTA-NOC PET-CT in patients with Recurrent Medullary Thyroid Carcinoma (MTC): comparison with 18F-FDG PET-CT. Nucl Med Commun (in Press)

    Google Scholar 

  • Naswa N, Sharma P, Nazar AH, Agarwal KK, Kumar R, Ammini AC (2012) Prospective evaluation of 68Ga-DOTA-NOC PET-CT in phaeochromocytoma and paraganglioma: preliminary results from a single centre study. Eur Radiol 22:710–719. DOI 10.1007/s00330-011-2289-x

    Google Scholar 

  • Naswa N, Sharma P, Kumar A, Soundararajan R, Kumar R, Malhotra A, Ammini AC, Bal C (2012) 68Ga-DOTANOC PET/CT in patients with carcinoma of unknown primary of neuroendocrine origin. Clin Nucl Med 37(3):245–251

    Google Scholar 

  • Neumann HPH, Berger DP, Sigmund G et al (1993) Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel- Lindau disease. N Engl J Med 329:1531–1538

    Article  PubMed  CAS  Google Scholar 

  • Neumann HPH, Bender BU, Reincke M et al (1999) Adrenal sparing surgery for pheochromocytoma. Br J Surg 84:94–97

    Article  Google Scholar 

  • Oberg K (2002) Carcinoid tumors: molecular genetics, tumor biology, and update of diagnosis and treatment. Curr Opin Oncol 14:38–45

    Article  PubMed  CAS  Google Scholar 

  • Prasad V, Ambrosini V, Hommann M, Hoersch D, Fanti S, Baum RP (2010) Detection of unknown primary neuroendocrine tumors (CUP-NET) using 68Ga-DOTANOC receptor PET/CT. Eur J Nucl Med Mol Imaging 37(1):67–77

    Google Scholar 

  • Phlipponneau M, Nocaudie M, Epelbaum J et al (1994) Somatostatin analogs for the localization and preoperative treatment of an adrenocorticotropin-secreting bronchial carcinoid tumor. J Clin Endocrinol Metab 78:20–24

    Article  PubMed  CAS  Google Scholar 

  • Putzer D, Gabriel M, Henninger B, Kendler D, Uprimny D, Dobrozemsky G (2009) Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med 50:1214–1221

    Article  PubMed  Google Scholar 

  • Quint LE, Glazer GM, Francis IR et al (1987) Pheochromocytoma and paraganglioma: comparison of MRI imaging with CT and 131I MIBG scintigraphy. Radiology 165:89–93

    PubMed  CAS  Google Scholar 

  • Reisine T, Bell GI (1995) Molecular biology of somatostatin receptors. Endocr Rev 16:427–442

    Google Scholar 

  • Reubi JC, Kvols L, Krenning E, Lamberts SWJ (1991) In vitro and in vivo detection of somatostatin receptors in human malignant tissues. Acta Oncol 30:463–468

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS et al (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27:273–282

    Article  PubMed  CAS  Google Scholar 

  • Rindi G, Villanacci V, Ubiali A (2000) Biological and molecular aspects of gastroenteropancreatic neuroendocrine tumors. Digestion 62(Suppl 1):19–26

    Article  PubMed  CAS  Google Scholar 

  • Rindi G, Villanacci V, Ubiali A, Scarpa A et al (2001) Endocrine tumors of the digestive tract and pancreas: histogenesis, diagnosis, and molecular basis. Expert Rev Mol Diagn 1:323–333

    Article  PubMed  CAS  Google Scholar 

  • Rindi G, Kloppel G, Alhman H et al (2006) TNM staging of foregut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch 449(4):395–401

    Article  PubMed  CAS  Google Scholar 

  • Rindi G, Kloppel G, Couvelard A et al (2007) TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch 451(4):757–762

    Article  PubMed  CAS  Google Scholar 

  • Ruf J, Schiefer J, Furth C et al (2011) 68Ga-DOTATOC PET/CT of neuroendocrine tumors: spotlight on the CT phases of a triple-phase protocol. J Nucl Med 52:697–704

    Article  PubMed  Google Scholar 

  • Savelli G, Lucignani G, Seregni E, Marchianò A, Serafini G, Aliberti G et al (2004) Feasibility of somatostatin receptor scintigraphy in the detection of occult primary gastro-entero-pancreatic (GEP) neuroendocrine tumors. Nucl Med Commun 25:445–449

    Article  PubMed  Google Scholar 

  • Schillaci O, Annibale B, Scopinaro F, delle Fave GF, Colella AC (1997) Somatostatin receptor scintigraphy of malignant somatostatinoma with indium-111-pentetreotide. J Nucl Med 38:886–887

    Google Scholar 

  • Schillaci O, Massa R, Scopinaro F (2000) Indium-111-pentetreotide scintigraphy in the detection of insulinomas: importance of SPECT imaging. J Nucl Med 41:459–462

    PubMed  CAS  Google Scholar 

  • Scollo C, Baudin E, Travagli JP, Caillou B, Bellon N, Leboulleux S et al (2003) Rationale for central and bilateral lymph node dissection in sporadic and hereditary medullary thyroid cancer. J Clin Endocrinol Metab 88:2070–2075

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Johnston CF, Buchanan KD, Ferguson WR, Laird JD, Crothers JG, MacIirath EM (1998) Localization of neuroendocrine tumors with [111In] DTPA-octreotide scintigraphy (Octreoscan): a comparative study with CT and MR imaging. QJM 91:295–301

    Article  PubMed  CAS  Google Scholar 

  • Shuklin BL, Thompson NW, Shapiro B et al (1999) Pheochromocytomas: imaging with 2-[fluorine-18] fluoro-2-deoxy-d-glucose PET. Radiology 212:35–41

    Google Scholar 

  • Solcia E, Rindi G, Paolotti D, La Rosa S, Capella C, Fiocca R (1999) Clinicopathological profile as a basis for classification of the endocrine tumors of the gastroenteropancreatic tract. Ann Oncol 10(Suppl 2):S9–S15

    Article  PubMed  Google Scholar 

  • Solcia E, Kloppel G, Sobin LH (2000) Histological typing of endocrine tumors, 2nd edn. World Health Organization, Heidelberg

    Book  Google Scholar 

  • Srirajaskanthan R, Toumpanakis C, Karpathakis A et al (2008) Surgical management and palliative treatment in bronchial neuroendocrine tumors: a clinical study of 45 patients. Lung Cancer 65:68–73

    Article  PubMed  Google Scholar 

  • Srirajaskanthan R, Kayani I, Quigley AM, Soh J, Caplin ME, Bomanji J (2010) The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111 In-DTPA-octreotide scintigraphy. J Nucl Med 51:875–882

    Article  PubMed  CAS  Google Scholar 

  • Strauss LG, Ponti PS (1991) The application of PET in clinical oncology. J Nucl Med 32:623–648

    PubMed  CAS  Google Scholar 

  • Taal BG, Visser O (2004) Epidemiology of neuroendocrine tumors. Neuroendocrinology 80(Suppl 1):3–7

    Article  PubMed  CAS  Google Scholar 

  • Tabarin A, Valli N, Chanson P et al (1999) Usefulness of somatostatin receptor scintigraphy in patients with occult ectopic ACTH syndrome. J Clin Endocrinol Metab 84:1193–1202

    Article  PubMed  CAS  Google Scholar 

  • Taı¨eb D, Sebag F, Barlier A et al (2009) 18F-FDG avidity of pheochromocytomas and paragangliomas: A new molecular imaging signature? J Nucl Med 50:711–717

    Article  Google Scholar 

  • Thakker RV (2000) Multiple endocrine neoplasia type 1. In: De Groot LJ, Jameson JL (eds) Endocrinology, 4th edn. Saunders, Philadelphia, pp 2503–2517

    Google Scholar 

  • Torpy DJ, Chen DD, Mullen N et al (1999) Lack of utility of 111In-pentetreotide scintigraphy in localizing ectopic ACTH producing tumors: follow-up of 18 patients. J Clin Endocrinol Metab 84:1186–1192

    Article  PubMed  CAS  Google Scholar 

  • Trampal C, Engler H, Juhlin C et al (2004) Pheochromocytomas: detection with 11C Hydroxyephedrine PET. Radiology 230:423–428

    Article  PubMed  Google Scholar 

  • Tsagarakis S, Christoforaki M, Giannopoulou H, Rondogianni F, Housianakou I, Malagari C, Rontogianni D, Bellenis I, Thalassinos N (2003) A reappraisal of the utility of somatostatin receptor scintigraphy in patients with ectopic adrenocorticotropin Cushing’s syndrome. J Clin Endocrinol Metab 88:4754–4758

    Article  PubMed  CAS  Google Scholar 

  • Ugur O, Kostakg˘lu L, Gu¨ ler N, Caner B, Uysal U, Elahi N, Halilog˘ lu M, Yu¨ ksel D, Aras T, Bayhan H, Bekdik C (1996) Comparison of 99mTc(V)-DMSA, 201Tl and 99mTc-MIBI imaging in the follow-up of patients with medullary carcinoma of the thyroid. Eur J Nucl Med 23:1367–1371

    Google Scholar 

  • Van der Harst E, De Herder WW, Bruining HA et al (2000) 123[I] Metaiodobenzylguanidine and 111[In] octreotide uptake in benign and malignant pheochromocytomas. J Clin Endocrinol Metab 86:685–693

    Article  Google Scholar 

  • Weiss M, Yellin A, Husza’r M, Eisenstein Z, Bar-Ziv J, Krausz Y (1994) Localization of adrenocorticotropic hormone-secreting bronchial carcinoid tumor by somatostatin-receptor scintigraphy. Ann Intern Med 121:198–199

    PubMed  CAS  Google Scholar 

  • Werbel SS, Ober KP (1995) Pheochromocytoma: update on diagnosis, localization, and management. Med Clin North Am 79:131–153

    PubMed  CAS  Google Scholar 

  • Wild D, Schmitt JS, Ginj M et al (2003) DOTANOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging 30:1338–1347

    Article  PubMed  CAS  Google Scholar 

  • Win Z, Al-Nahhas A, Towey D et al (2007) 68Ga-DOTATATE PET in neuroectodermal tumours: first experience. Nucl Med Commun 28(359):363

    Google Scholar 

  • Zatelli MC, Piccin D, Tagliati F, Bottoni A, Luchin A, Vignali C et al (2006) Selective activation of somatostatin receptor subtypes differentially modulates secretion and viability in human medullary thyroid carcinoma primary cultures: potential clinical perspectives. J Clin Endocrinol Metab 91:2218–2224

    Article  PubMed  CAS  Google Scholar 

  • Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA et al (2007) Processing of generator-produced 68Ga for medical application. J Nucl Med 48:1741–1748

    Article  PubMed  CAS  Google Scholar 

  • Zimmer T, Stolzel U, Bader M, Koppenhagen K, Hamm B, Buhr H et al (1996) Endoscopic ultrasonography and somatostatin receptor scintigraphy in the pre-operative localisation of insulinomas and gastrinomas. Gut 39:562–568

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Bal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naswa, N., Bal, C.S. (2013). Divergent Role of 68Ga-Labeled Somatostatin Analogs in the Workup of Patients with NETs: AIIMS Experience. In: Baum, R., Rösch, F. (eds) Theranostics, Gallium-68, and Other Radionuclides. Recent Results in Cancer Research, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27994-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27994-2_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27993-5

  • Online ISBN: 978-3-642-27994-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics