Skip to main content

Inherited Disorders of Renal Calcium Handling

  • Living reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Human calcium homeostasis is maintained by a complex interplay of different hormonal systems controlling intestinal calcium uptake, renal calcium excretion, and calcium transport in bone and soft tissues. Changes in renal calcium handling may either reflect a renal compensation for disturbances in body calcium homeostasis or its hormonal regulation, or a primary defect in renal tubular calcium transport. Irrespective of the underlying etiology, hypercalciuria represents a major risk factor for renal calcifications and kidney stone disease requiring a thorough diagnostic workup. Especially in infants and young children, hereditary disorders of calcium metabolism and tubular calcium reabsorption have to be considered in the differential diagnosis. The elucidation of the underlying genetic etiology might directly affect the management of affected children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Moe SM. Confusion on the complexity of calcium balance. Semin Dial. 2010;23(5):492–7.

    Article  PubMed  Google Scholar 

  2. Wolfram G. New reference values for nutrient intake in Germany, Austria and Switzerland (DACH-Reference Values). Forum Nutr. 2003;56:95–7.

    CAS  PubMed  Google Scholar 

  3. Calcium CtRDRIfVDa, Medicine Io. Dietary Reference Intakes for Calcium and Vitamin D. vol 1. The National Academies; 2011.

    Google Scholar 

  4. Gueguen L, Pointillart A. The bioavailability of dietary calcium. J Am Coll Nutr. 2000;19(2 Suppl):119s–36s.

    Article  CAS  PubMed  Google Scholar 

  5. Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012;92(1):131–55. https://doi.org/10.1152/physrev.00002.2011.

    Article  CAS  PubMed  Google Scholar 

  6. Kumar R, Tebben PJ, Thompson JR. Vitamin D and the kidney. Arch Biochem Biophys. 2012;523(1):77–86. https://doi.org/10.1016/j.abb.2012.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suki WN. Calcium transport in the nephron. Am J Phys. 1979;237(1):F1–6. https://doi.org/10.1152/ajprenal.1979.237.1.F1.

    Article  CAS  Google Scholar 

  8. Wright FS, Bomsztyk K. Calcium transport by the proximal tubule. Adv Exp Med Biol. 1986;208:165–70. https://doi.org/10.1007/978-1-4684-5206-8_18.

    Article  CAS  PubMed  Google Scholar 

  9. Alexander RT, Dimke H, Cordat E. Proximal tubular NHEs: sodium, protons and calcium? Am J Physiol Ren Physiol. 2013;305(3):F229–36. https://doi.org/10.1152/ajprenal.00065.2013.

    Article  CAS  Google Scholar 

  10. Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S. Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol. 2002;13(4):875–86.

    Article  CAS  PubMed  Google Scholar 

  11. Lee JW, Chou CL, Knepper MA. Deep Sequencing in Microdissected Renal Tubules Identifies Nephron Segment-Specific Transcriptomes. J Am Soc Nephrol. 2015;26(11):2669–77. https://doi.org/10.1681/ASN.2014111067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ibeh CL, Yiu AJ, Kanaras YL, et al. Evidence for a regulated Ca2+ entry in proximal tubular cells and its implication in calcium stone formation. J Cell Sci. 2019;132(9) https://doi.org/10.1242/jcs.225268.

  13. Hou J, Renigunta A, Konrad M, et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest. 2008;118(2):619–28. https://doi.org/10.1172/jci33970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Breiderhoff T, Himmerkus N, Stuiver M, et al. Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. Proc Natl Acad Sci U S A. 2012;109(35):14241–6. https://doi.org/10.1073/pnas.1203834109.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gong Y, Renigunta V, Himmerkus N, et al. Claudin-14 regulates renal Ca(+)(+) transport in response to CaSR signalling via a novel microRNA pathway. Embo J. 2012;31(8):1999–2012. https://doi.org/10.1038/emboj.2012.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dimke H, Desai P, Borovac J, Lau A, Pan W, Alexander RT. Activation of the Ca(2+)-sensing receptor increases renal claudin-14 expression and urinary Ca(2+) excretion. Am J Physiol Renal Physiol. 2013;304(6):F761–9. https://doi.org/10.1152/ajprenal.00263.2012.

    Article  CAS  PubMed  Google Scholar 

  17. Sato T, Courbebaisse M, Ide N, et al. Parathyroid hormone controls paracellular Ca(2+) transport in the thick ascending limb by regulating the tight-junction protein Claudin14. Proc Natl Acad Sci U S A. 2017;114(16):E3344–53. https://doi.org/10.1073/pnas.1616733114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gong Y, Himmerkus N, Plain A, Bleich M, Hou J. Epigenetic regulation of microRNAs controlling CLDN14 expression as a mechanism for renal calcium handling. J Am Soc Nephrol. 2015;26(3):663–76. https://doi.org/10.1681/asn.2014020129.

    Article  CAS  PubMed  Google Scholar 

  19. Hofer AM, Brown EM. Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol. 2003;4(7):530–8. https://doi.org/10.1038/nrm1154.

    Article  CAS  PubMed  Google Scholar 

  20. Lambers TT, Bindels RJ, Hoenderop JG. Coordinated control of renal Ca2+ handling. Kidney Int. 2006;69(4):650–4. https://doi.org/10.1038/sj.ki.5000169.

    Article  CAS  PubMed  Google Scholar 

  21. Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev. 2005;85(1):373–422. https://doi.org/10.1152/physrev.00003.2004.

    Article  CAS  PubMed  Google Scholar 

  22. Terker AS, Zhang C, McCormick JA, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 2015;21(1):39–50. https://doi.org/10.1016/j.cmet.2014.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van der Wijst J, Tutakhel OAZ, Bos C, et al. Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling. Am J Physiol Renal Physiol. 2018;315(1):F110–22. https://doi.org/10.1152/ajprenal.00379.2017.

    Article  CAS  PubMed  Google Scholar 

  24. Matos V, van Melle G, Boulat O, Markert M, Bachmann C, Guignard JP. Urinary phosphate/creatinine, calcium/creatinine, and magnesium/creatinine ratios in a healthy pediatric population. J Pediatr. 1997;131(2):252–7.

    Article  CAS  PubMed  Google Scholar 

  25. Bergsland KJ, Coe FL, White MD, et al. Urine risk factors in children with calcium kidney stones and their siblings. Kidney Int. 2012;81(11):1140–8. https://doi.org/10.1038/ki.2012.7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Govers LP, Toka HR, Hariri A, Walsh SB, Bockenhauer D. Mitochondrial DNA mutations in renal disease: an overview. Pediatr Nephrol. 2021;36(1):9–17. https://doi.org/10.1007/s00467-019-04404-6.

    Article  PubMed  Google Scholar 

  27. Alexander RT, Cordat E, Chambrey R, Dimke H, Eladari D. Acidosis and Urinary Calcium Excretion: Insights from Genetic Disorders. J Am Soc Nephrol. 2016;27(12):3511–20. https://doi.org/10.1681/ASN.2016030305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nijenhuis T, Renkema KY, Hoenderop JG, Bindels RJ. Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins. J Am Soc Nephrol. 2006;17(3):617–26. https://doi.org/10.1681/ASN.2005070732.

    Article  CAS  PubMed  Google Scholar 

  29. Curry JN, Saurette M, Askari M, et al. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J Clin Invest. 2020;130(4):1948–60. https://doi.org/10.1172/JCI127750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoenderop JG, van Leeuwen JP, van der Eerden BC, et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest. 2003;112(12):1906–14. https://doi.org/10.1172/jci19826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Loh NY, Bentley L, Dimke H, et al. Autosomal dominant hypercalciuria in a mouse model due to a mutation of the epithelial calcium channel, TRPV5. PLoS One. 2013;8(1):e55412. https://doi.org/10.1371/journal.pone.0055412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wakimoto K, Kobayashi K, Kuro-O M, et al. Targeted disruption of Na+/Ca2+ exchanger gene leads to cardiomyocyte apoptosis and defects in heartbeat. J Biol Chem. 2000;275(47):36991–8. https://doi.org/10.1074/jbc.M004035200.

    Article  CAS  PubMed  Google Scholar 

  33. Okunade GW, Miller ML, Pyne GJ, et al. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem. 2004;279(32):33742–50. https://doi.org/10.1074/jbc.M404628200.

    Article  CAS  PubMed  Google Scholar 

  34. Singh J, Moghal N, Pearce SH, Cheetham T. The investigation of hypocalcaemia and rickets. Arch Dis Child. 2003;88(5):403–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bastepe M. Genetics and epigenetics of parathyroid hormone resistance. Endocr Dev. 2013;24:11–24. https://doi.org/10.1159/000342494.

    Article  CAS  PubMed  Google Scholar 

  36. Brown EM, Pollak M, Chou YH, Seidman CE, Seidman JG, Hebert SC. Cloning and functional characterization of extracellular Ca(2+)-sensing receptors from parathyroid and kidney. Bone. 1995;17(2 Suppl):7S–11S.

    Article  CAS  PubMed  Google Scholar 

  37. Riccardi D, Hall AE, Chattopadhyay N, Xu JZ, Brown EM, Hebert SC. Localization of the extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am J Phys. 1998;274(3 Pt 2):F611–22.

    CAS  Google Scholar 

  38. Hebert SC, Brown EM. The extracellular calcium receptor. Curr Opin Cell Biol. 1995;7(4):484–92. 0955-0674(95)80004-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  39. Zhang C, Zhang T, Zou J, et al. Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist. Sci Adv. 2016;2(5):e1600241. https://doi.org/10.1126/sciadv.1600241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Centeno PP, Herberger A, Mun HC, et al. Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun. 2019;10(1):4693. https://doi.org/10.1038/s41467-019-12399-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wettschureck N, Lee E, Libutti SK, Offermanns S, Robey PG, Spiegel AM. Parathyroid-specific double knockout of Gq and G11 alpha-subunits leads to a phenotype resembling germline knockout of the extracellular Ca2+ -sensing receptor. Mol Endocrinol. 2007;21(1):274–80. https://doi.org/10.1210/me.2006-0110.

    Article  CAS  PubMed  Google Scholar 

  42. Nesbit MA, Hannan FM, Howles SA, et al. Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3. Nat Genet. 2013;45(1):93–7. https://doi.org/10.1038/ng.2492.

    Article  CAS  PubMed  Google Scholar 

  43. Pollak MR, Brown EM, Estep HL, et al. Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation. Nat Genet. 1994;8(3):303–7. https://doi.org/10.1038/ng1194-303.

    Article  CAS  PubMed  Google Scholar 

  44. Pearce SH, Williamson C, Kifor O, et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med. 1996;335(15):1115–22. https://doi.org/10.1056/NEJM199610103351505.

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe S, Fukumoto S, Chang H, et al. Association between activating mutations of calcium-sensing receptor and Bartter's syndrome. Lancet. 2002;360(9334):692–4. https://doi.org/10.1016/S0140-6736(02)09842-2.

    Article  CAS  PubMed  Google Scholar 

  46. Nesbit MA, Hannan FM, Howles SA, et al. Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia. N Engl J Med. 2013;368(26):2476–86. https://doi.org/10.1056/NEJMoa1300253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mannstadt M, Harris M, Bravenboer B, et al. Germline mutations affecting Gα11 in hypoparathyroidism. N Engl J Med. 2013;368(26):2532–4. https://doi.org/10.1056/NEJMc1300278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rodd C, Goodyer P. Hypercalcemia of the newborn: etiology, evaluation, and management. Pediatr Nephrol. 1999;13(6):542–7.

    Article  CAS  PubMed  Google Scholar 

  49. Davies JH. A practical approach to problems of hypercalcaemia. Endocr Dev. 2009;16:93–114. https://doi.org/10.1159/000223691.

    Article  CAS  PubMed  Google Scholar 

  50. Davies JH, Shaw NJ. Investigation and management of hypercalcaemia in children. Arch Dis Child. 2012;97(6):533–8. https://doi.org/10.1136/archdischild-2011-301284.

    Article  PubMed  Google Scholar 

  51. Vieth R. The mechanisms of vitamin D toxicity. Bone Miner. 1990;11(3):267–72.

    Article  CAS  PubMed  Google Scholar 

  52. Mizusawa Y, Burke JR. Prednisolone and cellulose phosphate treatment in idiopathic infantile hypercalcaemia with nephrocalcinosis. J Paediatr Child Health. 1996;32(4):350–2.

    Article  CAS  PubMed  Google Scholar 

  53. Pak CY. Clinical pharmacology of sodium cellulose phosphate. J Clin Pharmacol. 1979;19(8-9 Pt 1):451–7.

    Article  CAS  PubMed  Google Scholar 

  54. Skalova S, Cerna L, Bayer M, Kutilek S, Konrad M, Schlingmann KP. Intravenous pamidronate in the treatment of severe idiopathic infantile hypercalcemia. Iran J Kidney Dis. 2013;7(2):160–4.

    PubMed  Google Scholar 

  55. Nguyen M, Boutignon H, Mallet E, et al. Infantile hypercalcemia and hypercalciuria: new insights into a vitamin D-dependent mechanism and response to ketoconazole treatment. J Pediatr Aug. 2010;157(2):296–302. https://doi.org/10.1016/j.jpeds.2010.02.025.

    Article  CAS  Google Scholar 

  56. Fencl F, Blahova K, Schlingmann KP, Konrad M, Seeman T. Severe hypercalcemic crisis in an infant with idiopathic infantile hypercalcemia caused by mutation in CYP24A1 gene. Eur J Pediatr. 2013;172(1):45–9. https://doi.org/10.1007/s00431-012-1818-1.

    Article  PubMed  Google Scholar 

  57. Pollak MR, Brown EM, Chou YH, et al. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell. 1993;75(7):1297–303. 0092-8674(93)90617-Y [pii]

    Article  CAS  PubMed  Google Scholar 

  58. Thakker RV. Diseases associated with the extracellular calcium-sensing receptor. Cell Calcium. 2004;35(3):275–82. https://doi.org/10.1016/j.ceca.2003.10.010.

    Article  CAS  PubMed  Google Scholar 

  59. Marx SJ, Attie MF, Levine MA, Spiegel AM, Downs RW, Lasker RD. The hypocalciuric or benign variant of familial hypercalcemia: clinical and biochemical features in fifteen kindreds. Medicine (Baltimore). 1981;60(6):397–412.

    Article  CAS  Google Scholar 

  60. Cole DE, Janicic N, Salisbury SR, Hendy GN. Neonatal severe hyperparathyroidism, secondary hyperparathyroidism, and familial hypocalciuric hypercalcemia: multiple different phenotypes associated with an inactivating Alu insertion mutation of the calcium-sensing receptor gene. Am J Med Genet. 1997;71(2):202–10.

    Article  CAS  PubMed  Google Scholar 

  61. Gunn IR, Gaffney D. Clinical and laboratory features of calcium-sensing receptor disorders: a systematic review. Ann Clin Biochem. 2004;41(Pt 6):441–58. https://doi.org/10.1258/0004563042466802.

    Article  CAS  PubMed  Google Scholar 

  62. Lightwood R, Stapleton T. Idiopathic hypercalcaemia in infants. Lancet. 1953;265(6779):255–6.

    Article  CAS  PubMed  Google Scholar 

  63. Fanconi G. Chronic disorders of calcium and phosphate metabolism in children. Schweiz Med Wochenschr. 1951;81(38):908–13.

    CAS  PubMed  Google Scholar 

  64. Morgan HG, Mitchell RG, Stowers JM, Thomson J. Metabolic studies on two infants with idiopathic hypercalcaemia. Lancet. 1956;270(6929):925–31.

    Article  CAS  PubMed  Google Scholar 

  65. Fraser D. The relation between infantile hypercalcemia and vitamin D--public health implications in North America. Pediatrics. 1967;40(6):1050–61.

    CAS  PubMed  Google Scholar 

  66. Pronicka E, Rowińska E, Kulczycka H, Lukaszkiewicz J, Lorenc R, Janas R. Persistent hypercalciuria and elevated 25-hydroxyvitamin D3 in children with infantile hypercalcaemia. Pediatr Nephrol. 1997;11(1):2–6.

    Article  CAS  PubMed  Google Scholar 

  67. Williams JC, Barratt-Boyes BG, Lowe JB. Supravalvular aortic stenosis. Circulation. 1961;24:1311–8.

    Article  CAS  PubMed  Google Scholar 

  68. Beuren AJ, Apitz J, Harmjanz D. Supravalvular aortic stenosis in association with mental retardation and a certain facial appearance. Circulation. 1962;26:1235–40.

    Article  CAS  PubMed  Google Scholar 

  69. Schlingmann KP, Kaufmann M, Weber S, et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med. 2011;365(5):410–21. https://doi.org/10.1056/NEJMoa1103864.

    Article  CAS  PubMed  Google Scholar 

  70. Makin G, Lohnes D, Byford V, Ray R, Jones G. Target cell metabolism of 1,25-dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24-oxidation. Biochem J. 1989;262(1):173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Reddy GS, Tserng KY. Calcitroic acid, end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation pathway. Biochemistry. 1989;28(4):1763–9.

    Article  CAS  PubMed  Google Scholar 

  72. Kaufmann M, Gallagher JC, Peacock M, et al. Clinical Utility of Simultaneous Quantitation of 25-Hydroxyvitamin D and 24,25-Dihydroxyvitamin D by LC-MS/MS Involving Derivatization With DMEQ-TAD. J Clin Endocrinol Metab. 2014;99(7):2567–74. https://doi.org/10.1210/jc.2013-4388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Misselwitz J, Hesse V. Hypercalcemia following prophylactic vitamin D administration. Kinderarztl Prax. 1986;54(8):431–8.

    CAS  PubMed  Google Scholar 

  74. Streeten EA, Zarbalian K, Damcott CM. CYP24A1 mutations in idiopathic infantile hypercalcemia. N Engl J Med. 2011;365(18):1741–2.; author reply 1742-3. https://doi.org/10.1056/NEJMc1110226#SA2.

    Article  CAS  PubMed  Google Scholar 

  75. Tebben PJ, Milliner DS, Horst RL, et al. Hypercalcemia, hypercalciuria, and elevated calcitriol concentrations with autosomal dominant transmission due to CYP24A1 mutations: effects of ketoconazole therapy. J Clin Endocrinol Metab. 2012;97(3):E423–7. https://doi.org/10.1210/jc.2011-1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nesterova G, Malicdan MC, Yasuda K, et al. 1,25-(OH)2D-24 Hydroxylase (CYP24A1) Deficiency as a Cause of Nephrolithiasis. Clin J Am Soc Nephrol. 2013;8(4):649–57. https://doi.org/10.2215/cjn.05360512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schlingmann KP, Ruminska J, Kaufmann M, et al. Autosomal-Recessive Mutations in SLC34A1 Encoding Sodium-Phosphate Cotransporter 2A Cause Idiopathic Infantile Hypercalcemia. J Am Soc Nephrol. 2016;27(2):604–14. https://doi.org/10.1681/asn.2014101025.

    Article  CAS  PubMed  Google Scholar 

  78. Daga A, Majmundar AJ, Braun DA, et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int. 2018;93(1):204–13. https://doi.org/10.1016/j.kint.2017.06.025.

    Article  CAS  PubMed  Google Scholar 

  79. Hureaux M, Molin A, Jay N, et al. Prenatal hyperechogenic kidneys in three cases of infantile hypercalcemia associated with SLC34A1 mutations. Pediatr Nephrol. 2018;33(10):1723–9. https://doi.org/10.1007/s00467-018-3998-z.

    Article  PubMed  Google Scholar 

  80. Dasgupta D, Wee MJ, Reyes M, et al. Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J Am Soc Nephrol. 2014;25(10):2366–75. https://doi.org/10.1681/asn.2013101085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78(2):193–201. https://doi.org/10.1086/499410.

    Article  CAS  PubMed  Google Scholar 

  82. Bergwitz C, Roslin NM, Tieder M, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78(2):179–92. https://doi.org/10.1086/499409.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Peter Schlingmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schlingmann, K.P., Konrad, M. (2021). Inherited Disorders of Renal Calcium Handling. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_110-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_110-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics