Skip to main content

Disorders of Calcium and Magnesium Metabolism

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

Human calcium and magnesium homeostasis critically depends on the renal conservation or excretion. Changes in renal calcium and magnesium handling may either reflect a renal compensation for disturbances in body homeostasis or a primary defect in renal tubular transport. Calcium homeostasis is controlled by a complex interplay of different endocrine systems including the parathyroid gland and vitamin D and is tightly linked to phosphate metabolism. Alterations may result in calcium deficiency as well as calcium excess. Irrespective of the underlying etiology, hypercalciuria represents a major risk factor for renal calcifications and kidney stone disease. Inherited disorders of calcium metabolism may affect endocrine control as well as renal tubular transport processes.

In contrast, disturbances in human magnesium homeostasis predominantly occur in the form of magnesium deficiency either by reduced nutritional intake, intestinal malabsorption or renal loss. Hypermagnesemia is a rare phenomenon and usually reflects a reduction in glomerular filtration rate. Next to acquired disorders and side effects of therapeutic agents, inherited disorders associated with renal magnesium wasting affect a significant subset of patients, especially in infancy and childhood.

In the past decades, molecular studies have substantiated the role of a variety of genes and their encoded proteins in human epithelial calcium and magnesium transport. In many cases, careful clinical and biochemical assessment allows to distinguish the different disease entities. Here, we summarize the current state of knowledge on the pathophysiology, clinical spectrum, diagnostics, and therapy of acquired and hereditary disorders of renal calcium and magnesium handling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Dietary reference intakes for calcium and vitamin D, vol. 1. The National Academies; 2011.

    Google Scholar 

  2. Gueguen L, Pointillart A. The bioavailability of dietary calcium. J Am Coll Nutr. 2000;19(2 Suppl):119s–36s.

    Article  CAS  PubMed  Google Scholar 

  3. Moe SM. Confusion on the complexity of calcium balance. Semin Dial. 2010;23(5):492–7.

    Article  PubMed  Google Scholar 

  4. Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012;92(1):131–55. https://doi.org/10.1152/physrev.00002.2011.

    Article  CAS  PubMed  Google Scholar 

  5. Kumar R, Tebben PJ, Thompson JR. Vitamin D and the kidney. Arch Biochem Biophys. 2012;523(1):77–86. https://doi.org/10.1016/j.abb.2012.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suki WN. Calcium transport in the nephron. Am J Physiol. 1979;237(1):F1–6. https://doi.org/10.1152/ajprenal.1979.237.1.F1.

    Article  CAS  PubMed  Google Scholar 

  7. Wright FS, Bomsztyk K. Calcium transport by the proximal tubule. Adv Exp Med Biol. 1986;208:165–70. https://doi.org/10.1007/978-1-4684-5206-8_18.

    Article  CAS  PubMed  Google Scholar 

  8. Alexander RT, Dimke H, Cordat E. Proximal tubular NHEs: sodium, protons and calcium? Am J Physiol Renal Physiol. 2013;305(3):F229–36. https://doi.org/10.1152/ajprenal.00065.2013.

    Article  CAS  PubMed  Google Scholar 

  9. Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S. Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol. 2002;13(4):875–86.

    Article  CAS  PubMed  Google Scholar 

  10. Lee JW, Chou CL, Knepper MA. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J Am Soc Nephrol. 2015;26(11):2669–77. https://doi.org/10.1681/ASN.2014111067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ibeh CL, Yiu AJ, Kanaras YL, et al. Evidence for a regulated Ca2+ entry in proximal tubular cells and its implication in calcium stone formation. J Cell Sci. 2019;132(9):jcs225268. https://doi.org/10.1242/jcs.225268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hou J, Renigunta A, Konrad M, et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest. 2008;118(2):619–28. https://doi.org/10.1172/jci33970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Breiderhoff T, Himmerkus N, Stuiver M, et al. Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. Proc Natl Acad Sci U S A. 2012;109(35):14241–6. https://doi.org/10.1073/pnas.1203834109.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gong Y, Renigunta V, Himmerkus N, et al. Claudin-14 regulates renal Ca(+)(+) transport in response to CaSR signalling via a novel microRNA pathway. EMBO J. 2012;31(8):1999–2012. https://doi.org/10.1038/emboj.2012.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dimke H, Desai P, Borovac J, Lau A, Pan W, Alexander RT. Activation of the Ca(2+)-sensing receptor increases renal claudin-14 expression and urinary Ca(2+) excretion. Am J Physiol Renal Physiol. 2013;304(6):F761–9. https://doi.org/10.1152/ajprenal.00263.2012.

    Article  CAS  PubMed  Google Scholar 

  16. Sato T, Courbebaisse M, Ide N, et al. Parathyroid hormone controls paracellular Ca(2+) transport in the thick ascending limb by regulating the tight-junction protein Claudin14. Proc Natl Acad Sci U S A. 2017;114(16):E3344–53. https://doi.org/10.1073/pnas.1616733114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gong Y, Himmerkus N, Plain A, Bleich M, Hou J. Epigenetic regulation of microRNAs controlling CLDN14 expression as a mechanism for renal calcium handling. J Am Soc Nephrol. 2015;26(3):663–76. https://doi.org/10.1681/asn.2014020129.

    Article  CAS  PubMed  Google Scholar 

  18. Hofer AM, Brown EM. Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol. 2003;4(7):530–8. https://doi.org/10.1038/nrm1154.

    Article  CAS  PubMed  Google Scholar 

  19. Lambers TT, Bindels RJ, Hoenderop JG. Coordinated control of renal Ca2+ handling. Kidney Int. 2006;69(4):650–4. https://doi.org/10.1038/sj.ki.5000169.

    Article  CAS  PubMed  Google Scholar 

  20. Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev. 2005;85(1):373–422. https://doi.org/10.1152/physrev.00003.2004.

    Article  CAS  PubMed  Google Scholar 

  21. Terker AS, Zhang C, McCormick JA, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 2015;21(1):39–50. https://doi.org/10.1016/j.cmet.2014.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van der Wijst J, Tutakhel OAZ, Bos C, et al. Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling. Am J Physiol Renal Physiol. 2018;315(1):F110–22. https://doi.org/10.1152/ajprenal.00379.2017.

    Article  CAS  PubMed  Google Scholar 

  23. Matos V, van Melle G, Boulat O, Markert M, Bachmann C, Guignard JP. Urinary phosphate/creatinine, calcium/creatinine, and magnesium/creatinine ratios in a healthy pediatric population. J Pediatr. 1997;131(2):252–7.

    Article  CAS  PubMed  Google Scholar 

  24. Bergsland KJ, Coe FL, White MD, et al. Urine risk factors in children with calcium kidney stones and their siblings. Kidney Int. 2012;81(11):1140–8. https://doi.org/10.1038/ki.2012.7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blanchard A, Curis E, Guyon-Roger T, et al. Observations of a large Dent disease cohort. Kidney Int. 2016;90(2):430–9. https://doi.org/10.1016/j.kint.2016.04.022.

    Article  PubMed  Google Scholar 

  26. Zaniew M, Bökenkamp A, Kolbuc M, et al. Long-term renal outcome in children with OCRL mutations: retrospective analysis of a large international cohort. Nephrol Dial Transplant. 2018;33(1):85–94. https://doi.org/10.1093/ndt/gfw350.

    Article  CAS  PubMed  Google Scholar 

  27. Santer R, Schneppenheim R, Dombrowski A, Götze H, Steinmann B, Schaub J. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet. 1997;17(3):324–6. https://doi.org/10.1038/ng1197-324.

    Article  CAS  PubMed  Google Scholar 

  28. Mannstadt M, Magen D, Segawa H, et al. Fanconi-Bickel syndrome and autosomal recessive proximal tubulopathy with hypercalciuria (ARPTH) are allelic variants caused by GLUT2 mutations. J Clin Endocrinol Metab. 2012;97(10):E1978–86. https://doi.org/10.1210/jc.2012-1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Curry JN, Saurette M, Askari M, et al. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J Clin Invest. 2020;130(4):1948–60. https://doi.org/10.1172/JCI127750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoenderop JG, van Leeuwen JP, van der Eerden BC, et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest. 2003;112(12):1906–14. https://doi.org/10.1172/jci19826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Loh NY, Bentley L, Dimke H, et al. Autosomal dominant hypercalciuria in a mouse model due to a mutation of the epithelial calcium channel, TRPV5. PLoS One. 2013;8(1):e55412. https://doi.org/10.1371/journal.pone.0055412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wakimoto K, Kobayashi K, Kuro-O M, et al. Targeted disruption of Na+/Ca2+ exchanger gene leads to cardiomyocyte apoptosis and defects in heartbeat. J Biol Chem. 2000;275(47):36991–8. https://doi.org/10.1074/jbc.M004035200.

    Article  CAS  PubMed  Google Scholar 

  33. Okunade GW, Miller ML, Pyne GJ, et al. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem. 2004;279(32):33742–50. https://doi.org/10.1074/jbc.M404628200.

    Article  CAS  PubMed  Google Scholar 

  34. Singh J, Moghal N, Pearce SH, Cheetham T. The investigation of hypocalcaemia and rickets. Arch Dis Child. 2003;88(5):403–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bastepe M. Genetics and epigenetics of parathyroid hormone resistance. Endocr Dev. 2013;24:11–24. https://doi.org/10.1159/000342494.

    Article  CAS  PubMed  Google Scholar 

  36. Brown EM, Pollak M, Chou YH, Seidman CE, Seidman JG, Hebert SC. Cloning and functional characterization of extracellular Ca(2+)-sensing receptors from parathyroid and kidney. Bone. 1995;17(2 Suppl):7S–11S.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang C, Zhang T, Zou J, et al. Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist. Sci Adv. 2016;2(5):e1600241. https://doi.org/10.1126/sciadv.1600241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wettschureck N, Lee E, Libutti SK, Offermanns S, Robey PG, Spiegel AM. Parathyroid-specific double knockout of Gq and G11 alpha-subunits leads to a phenotype resembling germline knockout of the extracellular Ca2+ -sensing receptor. Mol Endocrinol. 2007;21(1):274–80. https://doi.org/10.1210/me.2006-0110.

    Article  CAS  PubMed  Google Scholar 

  39. Centeno PP, Herberger A, Mun HC, et al. Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun. 2019;10(1):4693. https://doi.org/10.1038/s41467-019-12399-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nesbit MA, Hannan FM, Howles SA, et al. Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3. Nat Genet. 2013;45(1):93–7. https://doi.org/10.1038/ng.2492.

    Article  CAS  PubMed  Google Scholar 

  41. Yasuoka Y, Sato Y, Healy JM, Nonoguchi H, Kawahara K. pH-sensitive expression of calcium-sensing receptor (CaSR) in type-B intercalated cells of the cortical collecting ducts (CCD) in mouse kidney. Clin Exp Nephrol. 2015;19(5):771–82. https://doi.org/10.1007/s10157-014-1063-1.

    Article  CAS  PubMed  Google Scholar 

  42. Sands JM, Naruse M, Baum M, et al. Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest. 1997;99(6):1399–405. https://doi.org/10.1172/JCI119299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ranieri M, Di Mise A, Tamma G, Valenti G. Calcium sensing receptor exerts a negative regulatory action toward vasopressin-induced aquaporin-2 expression and trafficking in renal collecting duct. Vitam Horm. 2020;112:289–310. https://doi.org/10.1016/bs.vh.2019.08.008.

    Article  CAS  PubMed  Google Scholar 

  44. Pollak MR, Brown EM, Estep HL, et al. Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation. Nat Genet. 1994;8(3):303–7. https://doi.org/10.1038/ng1194-303.

    Article  CAS  PubMed  Google Scholar 

  45. Pearce SH, Williamson C, Kifor O, et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med. 1996;335(15):1115–22. https://doi.org/10.1056/NEJM199610103351505.

    Article  CAS  PubMed  Google Scholar 

  46. Watanabe S, Fukumoto S, Chang H, et al. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet. 2002;360(9334):692–4. https://doi.org/10.1016/S0140-6736(02)09842-2. S0140-6736(02)09842-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  47. Nesbit MA, Hannan FM, Howles SA, et al. Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia. N Engl J Med. 2013;368(26):2476–86. https://doi.org/10.1056/NEJMoa1300253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mannstadt M, Harris M, Bravenboer B, et al. Germline mutations affecting Gα11 in hypoparathyroidism. N Engl J Med. 2013;368(26):2532–4. https://doi.org/10.1056/NEJMc1300278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rodd C, Goodyer P. Hypercalcemia of the newborn: etiology, evaluation, and management. Pediatr Nephrol. 1999;13(6):542–7.

    Article  CAS  PubMed  Google Scholar 

  50. Davies JH. A practical approach to problems of hypercalcaemia. Endocr Dev. 2009;16:93–114. https://doi.org/10.1159/000223691. 000223691 [pii]

    Article  CAS  PubMed  Google Scholar 

  51. Davies JH, Shaw NJ. Investigation and management of hypercalcaemia in children. Arch Dis Child. 2012;97(6):533–8. https://doi.org/10.1136/archdischild-2011-301284.

    Article  PubMed  Google Scholar 

  52. Vieth R. The mechanisms of vitamin D toxicity. Bone Miner. 1990;11(3):267–72.

    Article  CAS  PubMed  Google Scholar 

  53. Mizusawa Y, Burke JR. Prednisolone and cellulose phosphate treatment in idiopathic infantile hypercalcaemia with nephrocalcinosis. J Paediatr Child Health. 1996;32(4):350–2.

    Article  CAS  PubMed  Google Scholar 

  54. Pak CY. Clinical pharmacology of sodium cellulose phosphate. J Clin Pharmacol. 1979;19(8–9 Pt 1):451–7.

    Article  CAS  PubMed  Google Scholar 

  55. Skalova S, Cerna L, Bayer M, Kutilek S, Konrad M, Schlingmann KP. Intravenous pamidronate in the treatment of severe idiopathic infantile hypercalcemia. Iran J Kidney Dis. 2013;7(2):160–4.

    PubMed  Google Scholar 

  56. Nguyen M, Boutignon H, Mallet E, et al. Infantile hypercalcemia and hypercalciuria: new insights into a vitamin D-dependent mechanism and response to ketoconazole treatment. J Pediatr. 2010;157(2):296–302. https://doi.org/10.1016/j.jpeds.2010.02.025. S0022-3476(10)00149-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  57. Fencl F, Blahova K, Schlingmann KP, Konrad M, Seeman T. Severe hypercalcemic crisis in an infant with idiopathic infantile hypercalcemia caused by mutation in CYP24A1 gene. Eur J Pediatr. 2013;172(1):45–9. https://doi.org/10.1007/s00431-012-1818-1.

    Article  PubMed  Google Scholar 

  58. Pollak MR, Brown EM, Chou YH, et al. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell. 1993;75(7):1297–303. 0092-8674(93)90617-Y [pii].

    Article  CAS  PubMed  Google Scholar 

  59. Thakker RV. Diseases associated with the extracellular calcium-sensing receptor. Cell Calcium. 2004;35(3):275–82. https://doi.org/10.1016/j.ceca.2003.10.010.

    Article  CAS  PubMed  Google Scholar 

  60. Marx SJ, Attie MF, Levine MA, Spiegel AM, Downs RW, Lasker RD. The hypocalciuric or benign variant of familial hypercalcemia: clinical and biochemical features in fifteen kindreds. Medicine (Baltimore). 1981;60(6):397–412.

    Article  CAS  PubMed  Google Scholar 

  61. Cole DE, Janicic N, Salisbury SR, Hendy GN. Neonatal severe hyperparathyroidism, secondary hyperparathyroidism, and familial hypocalciuric hypercalcemia: multiple different phenotypes associated with an inactivating Alu insertion mutation of the calcium-sensing receptor gene. Am J Med Genet. 1997;71(2):202–10.

    Article  CAS  PubMed  Google Scholar 

  62. Gunn IR, Gaffney D. Clinical and laboratory features of calcium-sensing receptor disorders: a systematic review. Ann Clin Biochem. 2004;41(Pt 6):441–58. https://doi.org/10.1258/0004563042466802.

    Article  CAS  PubMed  Google Scholar 

  63. Lightwood R, Stapleton T. Idiopathic hypercalcaemia in infants. Lancet. 1953;265(6779):255–6.

    Article  CAS  PubMed  Google Scholar 

  64. Fanconi G. [Chronic disorders of calcium and phosphate metabolism in children]. Schweiz Med Wochenschr. 1951;81(38):908–913.

    Google Scholar 

  65. Morgan HG, Mitchell RG, Stowers JM, Thomson J. Metabolic studies on two infants with idiopathic hypercalcaemia. Lancet. 1956;270(6929):925–31.

    Article  CAS  PubMed  Google Scholar 

  66. Fraser D. The relation between infantile hypercalcemia and vitamin D—public health implications in North America. Pediatrics. 1967;40(6):1050–61.

    CAS  PubMed  Google Scholar 

  67. Pronicka E, Rowińska E, Kulczycka H, Lukaszkiewicz J, Lorenc R, Janas R. Persistent hypercalciuria and elevated 25-hydroxyvitamin D3 in children with infantile hypercalcaemia. Pediatr Nephrol. 1997;11(1):2–6.

    Article  CAS  PubMed  Google Scholar 

  68. Williams JC, Barratt-Boyes BG, Lowe JB. Supravalvular aortic stenosis. Circulation. 1961;24:1311–8.

    Article  CAS  PubMed  Google Scholar 

  69. Beuren AJ, Apitz J, Harmjanz D. Supravalvular aortic stenosis in association with mental retardation and a certain facial appearance. Circulation. 1962;26:1235–40.

    Article  CAS  PubMed  Google Scholar 

  70. Schlingmann KP, Kaufmann M, Weber S, et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med. 2011;365(5):410–21. https://doi.org/10.1056/NEJMoa1103864.

    Article  CAS  PubMed  Google Scholar 

  71. Makin G, Lohnes D, Byford V, Ray R, Jones G. Target cell metabolism of 1,25-dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24-oxidation. Biochem J. 1989, 262;(1):173–80.

    Google Scholar 

  72. Reddy GS, Tserng KY. Calcitroic acid, end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation pathway. Biochemistry. 1989;28(4):1763–9.

    Article  CAS  PubMed  Google Scholar 

  73. Kaufmann M, Gallagher JC, Peacock M, et al. Clinical utility of simultaneous quantitation of 25-Hydroxyvitamin D and 24,25-Dihydroxyvitamin D by LC-MS/MS involving derivatization with DMEQ-TAD. J Clin Endocrinol Metab. 2014;99(7):2567–74. https://doi.org/10.1210/jc.2013-4388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Misselwitz J, Hesse V. [Hypercalcemia following prophylactic vitamin D administration]. Kinderarztl Prax. 1986;54(8):431–438.

    Google Scholar 

  75. Streeten EA, Zarbalian K, Damcott CM. CYP24A1 mutations in idiopathic infantile hypercalcemia. N Engl J Med. 2011;365(18):1741–2; author reply 1742–3. https://doi.org/10.1056/NEJMc1110226#SA2.

    Article  CAS  PubMed  Google Scholar 

  76. Tebben PJ, Milliner DS, Horst RL, et al. Hypercalcemia, hypercalciuria, and elevated calcitriol concentrations with autosomal dominant transmission due to CYP24A1 mutations: effects of ketoconazole therapy. J Clin Endocrinol Metab. 2012;97(3):E423–7. https://doi.org/10.1210/jc.2011-1935. jc.2011-1935 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nesterova G, Malicdan MC, Yasuda K, et al. 1,25-(OH)2D-24 hydroxylase (CYP24A1) deficiency as a cause of nephrolithiasis. Clin J Am Soc Nephrol. 2013;8(4):649–57. https://doi.org/10.2215/cjn.05360512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schlingmann KP, Ruminska J, Kaufmann M, et al. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol. 2016;27(2):604–14. https://doi.org/10.1681/asn.2014101025.

    Article  CAS  PubMed  Google Scholar 

  79. Daga A, Majmundar AJ, Braun DA, et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int. 2018;93(1):204–13. https://doi.org/10.1016/j.kint.2017.06.025.

    Article  CAS  PubMed  Google Scholar 

  80. Hureaux M, Molin A, Jay N, et al. Prenatal hyperechogenic kidneys in three cases of infantile hypercalcemia associated with SLC34A1 mutations. Pediatr Nephrol. 2018;33(10):1723–9. https://doi.org/10.1007/s00467-018-3998-z.

    Article  PubMed  Google Scholar 

  81. Dasgupta D, Wee MJ, Reyes M, et al. Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J Am Soc Nephrol. 2014;25(10):2366–75. https://doi.org/10.1681/asn.2013101085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78(2):193–201. https://doi.org/10.1086/499410.

    Article  CAS  PubMed  Google Scholar 

  83. Bergwitz C, Roslin NM, Tieder M, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78(2):179–92. https://doi.org/10.1086/499409.

    Article  CAS  PubMed  Google Scholar 

  84. Janiec A, Halat-Wolska P, Obrycki Ł, et al. Long-term outcome of the survivors of infantile hypercalcaemia with CYP24A1 and SLC34A1 mutations. Nephrol Dial Transplant. 2021;36(8):1484–92. https://doi.org/10.1093/ndt/gfaa178.

    Article  CAS  PubMed  Google Scholar 

  85. Quamme GA, de Rouffignac C. Epithelial magnesium transport and regulation by the kidney. Front Biosci. 2000;5:D694–711.

    Article  CAS  PubMed  Google Scholar 

  86. Kerstan D, Quamme GA. Physiology and pathophysiology of intestinal absorption of magnesium. In: Massry SGMH, Nishizawa Y, editors. Calcium in internal medicine. Springer; 2002. p. 171–83.

    Chapter  Google Scholar 

  87. Fine KD, Santa Ana CA, Porter JL, Fordtran JS. Intestinal absorption of magnesium from food and supplements. J Clin Invest. 1991;88(2):396–402. https://doi.org/10.1172/jci115317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. de Rouffignac C, Quamme G. Renal magnesium handling and its hormonal control. Physiol Rev. 1994;74(2):305–22.

    Article  PubMed  Google Scholar 

  89. Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. Magnesium transport in the renal distal convoluted tubule. Physiol Rev. 2001;81(1):51–84.

    Article  CAS  PubMed  Google Scholar 

  90. Quamme GA. Renal magnesium handling: new insights in understanding old problems. Kidney Int. 1997;52(5):1180–95.

    Article  CAS  PubMed  Google Scholar 

  91. Whang R, Hampton EM, Whang DD. Magnesium homeostasis and clinical disorders of magnesium deficiency. Ann Pharmacother. 1994;28(2):220–6.

    Article  CAS  PubMed  Google Scholar 

  92. Anast CS, Mohs JM, Kaplan SL, Burns TW. Evidence for parathyroid failure in magnesium deficiency. Science. 1972;177(4049):606–8.

    Article  CAS  PubMed  Google Scholar 

  93. Quitterer U, Hoffmann M, Freichel M, Lohse MJ. Paradoxical block of parathormone secretion is mediated by increased activity of G alpha subunits. J Biol Chem. 2001;276(9):6763–9. https://doi.org/10.1074/jbc.M007727200.

    Article  CAS  PubMed  Google Scholar 

  94. Zimmermann G, Zhou D, Taussig R. Mutations uncover a role for two magnesium ions in the catalytic mechanism of adenylyl cyclase. J Biol Chem. 1998;273(31):19650–5.

    Article  CAS  PubMed  Google Scholar 

  95. Hollifield JW. Magnesium depletion, diuretics, and arrhythmias. Am J Med. 1987;82(3a):30–7.

    Article  CAS  PubMed  Google Scholar 

  96. Elin RJ. Magnesium: the fifth but forgotten electrolyte. Am J Clin Pathol. 1994;102(5):616–22.

    Article  CAS  PubMed  Google Scholar 

  97. Arnold A, Tovey J, Mangat P, Penny W, Jacobs S. Magnesium deficiency in critically ill patients. Anaesthesia. 1995;50(3):203–5.

    Article  CAS  PubMed  Google Scholar 

  98. Hébert P, Mehta N, Wang J, Hindmarsh T, Jones G, Cardinal P. Functional magnesium deficiency in critically ill patients identified using a magnesium-loading test. Crit Care Med. 1997;25(5):749–55.

    Article  PubMed  Google Scholar 

  99. Hashimoto Y, Nishimura Y, Maeda H, Yokoyama M. Assessment of magnesium status in patients with bronchial asthma. J Asthma. 2000;37(6):489–96.

    Article  CAS  PubMed  Google Scholar 

  100. Sutton RA, Domrongkitchaiporn S. Abnormal renal magnesium handling. Miner Electrolyte Metab. 1993;19(4–5):232–40.

    CAS  PubMed  Google Scholar 

  101. Elisaf M, Panteli K, Theodorou J, Siamopoulos KC. Fractional excretion of magnesium in normal subjects and in patients with hypomagnesemia. Magnes Res. 1997;10(4):315–20.

    CAS  PubMed  Google Scholar 

  102. Tang NL, Cran YK, Hui E, Woo J. Application of urine magnesium/creatinine ratio as an indicator for insufficient magnesium intake. Clin Biochem. 2000;33(8):675–8. S0009912000001739 [pii].

    Article  CAS  PubMed  Google Scholar 

  103. Nicoll GW, Struthers AD, Fraser CG. Biological variation of urinary magnesium. Clin Chem. 1991;37(10 Pt 1):1794–5.

    Article  CAS  PubMed  Google Scholar 

  104. Djurhuus MS, Gram J, Petersen PH, Klitgaard NA, Bollerslev J, Beck-Nielsen H. Biological variation of serum and urinary magnesium in apparently healthy males. Scand J Clin Lab Invest. 1995;55(6):549–58.

    Article  CAS  PubMed  Google Scholar 

  105. Simon DB, Lu Y, Choate KA, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999;285(5424):103–6. 7616 [pii].

    Article  CAS  PubMed  Google Scholar 

  106. Konrad M, Schaller A, Seelow D, et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet. 2006;79(5):949–57. S0002-9297(07)60838-6 [pii]. https://doi.org/10.1086/508617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Praga M, Vara J, González-Parra E, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int. 1995;47(5):1419–25.

    Article  CAS  PubMed  Google Scholar 

  108. Weber S, Schneider L, Peters M, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2001;12(9):1872–81.

    Article  CAS  PubMed  Google Scholar 

  109. Godron A, Harambat J, Boccio V, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations. Clin J Am Soc Nephrol. 2012;7(5):801–9. CJN.12841211 [pii]. https://doi.org/10.2215/CJN.12841211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Claverie-Martin F, Garcia-Nieto V, Loris C, et al. Claudin-19 mutations and clinical phenotype in Spanish patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. PLoS One. 2013;8(1):e53151. https://doi.org/10.1371/journal.pone.0053151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sikora P, Zaniew M, Haisch L, et al. Retrospective cohort study of familial hypomagnesaemia with hypercalciuria and nephrocalcinosis due to CLDN16 mutations. Nephrol Dial Transplant. 2015;30(4):636–44. https://doi.org/10.1093/ndt/gfu374.

    Article  CAS  PubMed  Google Scholar 

  112. Hou J, Goodenough DA. Claudin-16 and claudin-19 function in the thick ascending limb. Curr Opin Nephrol Hypertens. 2010;19(5):483–8. https://doi.org/10.1097/MNH.0b013e32833b7125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hou J, Renigunta A, Gomes AS, et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A. 2009;106(36):15350–5. https://doi.org/10.1073/pnas.0907724106. 0907724106 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  114. Konrad M, Hou J, Weber S, et al. CLDN16 genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2008;19(1):171–81. ASN.2007060709 [pii]. https://doi.org/10.1681/ASN.2007060709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Blanchard A, Jeunemaitre X, Coudol P, et al. Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int. 2001;59(6):2206–15. kid736 [pii]. https://doi.org/10.1046/j.1523-1755.2001.00736.x.

    Article  CAS  PubMed  Google Scholar 

  116. Müller D, Kausalya PJ, Claverie-Martin F, et al. A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am J Hum Genet. 2003;73(6):1293–301. S0002-9297(07)63982-2 [pii]. https://doi.org/10.1086/380418.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zimmermann B, Plank C, Konrad M, et al. Hydrochlorothiazide in CLDN16 mutation. Nephrol Dial Transplant. 2006;21(8):2127–32. https://doi.org/10.1093/ndt/gfl144.

    Article  CAS  PubMed  Google Scholar 

  118. Knoers NV, Levtchenko EN. Gitelman syndrome. Orphanet J Rare Dis. 2008;3:22. https://doi.org/10.1186/1750-1172-3-22.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Simon DB, Nelson-Williams C, Bia MJ, et al. Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet. 1996;12(1):24–30. https://doi.org/10.1038/ng0196-24.

    Article  CAS  PubMed  Google Scholar 

  120. Gitelman HJ, Graham JB, Welt LG. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Phys. 1966;79:221–35.

    CAS  PubMed  Google Scholar 

  121. Peters N, Bettinelli A, Spicher I, Basilico E, Metta MG, Bianchetti MG. Renal tubular function in children and adolescents with Gitelman’s syndrome, the hypocalciuric variant of Bartter’s syndrome. Nephrol Dial Transplant. 1995;10(8):1313–9.

    CAS  PubMed  Google Scholar 

  122. Cruz DN, Shaer AJ, Bia MJ, Lifton RP, Simon DB, Yale Gitelman’s and Bartter’s Syndrome Collaborative Study Group. Gitelman’s syndrome revisited: an evaluation of symptoms and health-related quality of life. Kidney Int. 2001;59(2):710–7. kid540 [pii]. https://doi.org/10.1046/j.1523-1755.2001.059002710.x.

    Article  CAS  PubMed  Google Scholar 

  123. Vargas-Poussou R, Dahan K, Kahila D, et al. Spectrum of mutations in Gitelman syndrome. J Am Soc Nephrol. 2011;22(4):693–703. https://doi.org/10.1681/ASN.2010090907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Glaudemans B, Yntema HG, San-Cristobal P, et al. Novel NCC mutants and functional analysis in a new cohort of patients with Gitelman syndrome. Eur J Hum Genet. 2012;20(3):263–70. https://doi.org/10.1038/ejhg.2011.189.

    Article  CAS  PubMed  Google Scholar 

  125. Lee JW, Lee J, Heo NJ, Cheong HI, Han JS. Mutations in SLC12A3 and CLCNKB and their correlation with clinical phenotype in patients with Gitelman and Gitelman-like syndrome. J Korean Med Sci. 2016;31(1):47–54. https://doi.org/10.3346/jkms.2016.31.1.47.

    Article  CAS  PubMed  Google Scholar 

  126. Fujimura J, Nozu K, Yamamura T, et al. Clinical and genetic characteristics in patients with Gitelman syndrome. Kidney Int Rep. 2019;4(1):119–25. https://doi.org/10.1016/j.ekir.2018.09.015.

    Article  PubMed  Google Scholar 

  127. Blanchard A, Bockenhauer D, Bolignano D, et al. Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2017;91(1):24–33. https://doi.org/10.1016/j.kint.2016.09.046.

    Article  PubMed  Google Scholar 

  128. Peters M, Jeck N, Reinalter S, et al. Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies. Am J Med. 2002;112(3):183–90. S0002934301010865 [pii].

    Article  PubMed  Google Scholar 

  129. Pachulski RT, Lopez F, Sharaf R. Gitelman’s not-so-benign syndrome. N Engl J Med. 2005;353(8):850–1. https://doi.org/10.1056/NEJMc051040.

    Article  CAS  PubMed  Google Scholar 

  130. Bianchetti MG, Edefonti A, Bettinelli A. The biochemical diagnosis of Gitelman disease and the definition of “hypocalciuria”. Pediatr Nephrol. 2003;18(5):409–11.

    Article  PubMed  Google Scholar 

  131. Tammaro F, Bettinelli A, Cattarelli D, et al. Early appearance of hypokalemia in Gitelman syndrome. Pediatr Nephrol. 2010;25(10):2179–82. https://doi.org/10.1007/s00467-010-1575-1.

    Article  PubMed  Google Scholar 

  132. Bettinelli A, Tosetto C, Colussi G, Tommasini G, Edefonti A, Bianchetti MG. Electrocardiogram with prolonged QT interval in Gitelman disease. Kidney Int. 2002;62(2):580–4. https://doi.org/10.1046/j.1523-1755.2002.00467.x.

    Article  PubMed  Google Scholar 

  133. Scognamiglio R, Negut C, Calò LA. Aborted sudden cardiac death in two patients with Bartter’s/Gitelman’s syndromes. Clin Nephrol. 2007;67(3):193–7. https://doi.org/10.5414/cnp67193.

    Article  CAS  PubMed  Google Scholar 

  134. Calo L, Punzi L, Semplicini A. Hypomagnesemia and chondrocalcinosis in Bartter’s and Gitelman’s syndrome: review of the pathogenetic mechanisms. Am J Nephrol. 2000;5:347–50.

    Article  Google Scholar 

  135. Luthy C, Bettinelli A, Iselin S, et al. Normal prostaglandinuria E2 in Gitelman’s syndrome, the hypocalciuric variant of Bartter’s syndrome. Am J Kidney Dis. 1995;25(6):824–8.

    Article  CAS  PubMed  Google Scholar 

  136. Bockenhauer D, Feather S, Stanescu HC, et al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med. 2009;360(19):1960–70. 360/19/1960 [pii]. https://doi.org/10.1056/NEJMoa0810276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Scholl UI, Choi M, Liu T, et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A. 2009;106(14):5842–7. 0901749106 [pii]. https://doi.org/10.1073/pnas.0901749106.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Celmina M, Micule I, Inashkina I, et al. EAST/SeSAME syndrome: review of the literature and introduction of four new Latvian patients. Clin Genet. 2019;95(1):63–78. https://doi.org/10.1111/cge.13374.

    Article  CAS  PubMed  Google Scholar 

  139. Cross JH, Arora R, Heckemann RA, et al. Neurological features of epilepsy, ataxia, sensorineural deafness, tubulopathy syndrome. Dev Med Child Neurol. 2013;55(9):846–56. https://doi.org/10.1111/dmcn.12171.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Suzumoto Y, Columbano V, Gervasi L, et al. A case series of adult patients affected by EAST/SeSAME syndrome suggests more severe disease in subjects bearing. Intract Rare Dis Res. 2021;10(2):95–101. https://doi.org/10.5582/irdr.2020.03158.

    Article  Google Scholar 

  141. Paunier L, Radde IC, Kooh SW, Conen PE, Fraser D. Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics. 1968;41(2):385–402.

    CAS  PubMed  Google Scholar 

  142. Lombeck I, Ritzl F, Schnippering HG, et al. Primary hypomagnesemia. I. Absorption studies. Z Kinderheilkd. 1975;118(4):249–58.

    Article  CAS  PubMed  Google Scholar 

  143. Milla PJ, Aggett PJ, Wolff OH, Harries JT. Studies in primary hypomagnesaemia: evidence for defective carrier-mediated small intestinal transport of magnesium. Gut. 1979;20(11):1028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Matzkin H, Lotan D, Boichis H. Primary hypomagnesemia with a probable double magnesium transport defect. Nephron. 1989;52(1):83–6.

    Article  CAS  PubMed  Google Scholar 

  145. Schlingmann KP, Weber S, Peters M, et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet. 2002;31(2):166–70. ng889 [pii]. https://doi.org/10.1038/ng889.

    Article  CAS  PubMed  Google Scholar 

  146. Walder RY, Landau D, Meyer P, et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet. 2002;31(2):171–4. ng901 [pii]. https://doi.org/10.1038/ng901.

    Article  CAS  PubMed  Google Scholar 

  147. Jalkanen R, Pronicka E, Tyynismaa H, Hanauer A, Walder R, Alitalo T. Genetic background of HSH in three Polish families and a patient with an X;9 translocation. Eur J Hum Genet. 2006;14(1):55–62. 5201515 [pii]. https://doi.org/10.1038/sj.ejhg.5201515.

    Article  CAS  PubMed  Google Scholar 

  148. Guran T, Akcay T, Bereket A, et al. Clinical and molecular characterization of Turkish patients with familial hypomagnesaemia: novel mutations in TRPM6 and CLDN16 genes. Nephrol Dial Transplant. 2012;27(2):667–73. gfr300 [pii]. https://doi.org/10.1093/ndt/gfr300.

    Article  CAS  PubMed  Google Scholar 

  149. Lainez S, Schlingmann KP, van der Wijst J, et al. New TRPM6 missense mutations linked to hypomagnesemia with secondary hypocalcemia. Eur J Hum Genet. 2014;22(4):497–504. https://doi.org/10.1038/ejhg.2013.178.

    Article  CAS  PubMed  Google Scholar 

  150. Chubanov V, Schlingmann KP, Wäring J, et al. Hypomagnesemia with secondary hypocalcemia due to a missense mutation in the putative pore-forming region of TRPM6. J Biol Chem. 2007;282(10):7656–67. M611117200 [pii]. https://doi.org/10.1074/jbc.M611117200.

    Article  CAS  PubMed  Google Scholar 

  151. Cole DE, Kooh SW, Vieth R. Primary infantile hypomagnesaemia: outcome after 21 years and treatment with continuous nocturnal nasogastric magnesium infusion. Eur J Pediatr. 2000;159(1–2):38–43.

    Article  CAS  PubMed  Google Scholar 

  152. Shalev H, Phillip M, Galil A, Carmi R, Landau D. Clinical presentation and outcome in primary familial hypomagnesaemia. Arch Dis Child. 1998;78(2):127–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Schlingmann KP, Bandulik S, Mammen C, et al. Germline de novo mutations in ATP1A1 cause renal hypomagnesemia, refractory seizures, and intellectual disability. Am J Hum Genet. 2018;103(5):808–16. https://doi.org/10.1016/j.ajhg.2018.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lucking K, Nielsen JM, Pedersen PA, Jorgensen PL. Na-K-ATPase isoform (alpha 3, alpha 2, alpha 1) abundance in rat kidney estimated by competitive RT-PCR and ouabain binding. Am J Phys. 1996;271(2 Pt 2):F253–60.

    CAS  Google Scholar 

  155. Munzer JS, Daly SE, Jewell-Motz EA, Lingrel JB, Blostein R. Tissue- and isoform-specific kinetic behavior of the Na,K-ATPase. J Biol Chem. 1994;269(24):16668–76.

    Article  CAS  PubMed  Google Scholar 

  156. Lassuthova P, Rebelo AP, Ravenscroft G, et al. Mutations in ATP1A1 cause dominant Charcot-Marie-tooth type 2. Am J Hum Genet. 2018;102(3):505–14. https://doi.org/10.1016/j.ajhg.2018.01.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stregapede F, Travaglini L, Rebelo AP, et al. Hereditary spastic paraplegia is a novel phenotype for germline de novo ATP1A1 mutation. Clin Genet. 2020;97(3):521–6. https://doi.org/10.1111/cge.13668.

    Article  CAS  PubMed  Google Scholar 

  158. Beuschlein F, Boulkroun S, Osswald A, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet. 2013;45(4):440–4., , 444.e1–2. https://doi.org/10.1038/ng.2550.

    Article  CAS  PubMed  Google Scholar 

  159. Meij IC, Koenderink JB, van Bokhoven H, et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na(+),K(+)-ATPase gamma-subunit. Nat Genet. 2000;26(3):265–6. https://doi.org/10.1038/81543.

    Article  CAS  PubMed  Google Scholar 

  160. Arystarkhova E, Wetzel RK, Sweadner KJ. Distribution and oligomeric association of splice forms of Na(+)-K(+)-ATPase regulatory gamma-subunit in rat kidney. Am J Physiol Renal Physiol. 2002;282(3):F393–407. https://doi.org/10.1152/ajprenal.00146.2001.

    Article  CAS  PubMed  Google Scholar 

  161. Arystarkhova E, Donnet C, Asinovski NK, Sweadner KJ. Differential regulation of renal Na,K-ATPase by splice variants of the gamma subunit. J Biol Chem. 2002;277(12):10162–72. M111552200 [pii]. https://doi.org/10.1074/jbc.M111552200.

    Article  CAS  PubMed  Google Scholar 

  162. Geven WB, Monnens LA, Willems HL, Buijs WC, ter Haar BG. Renal magnesium wasting in two families with autosomal dominant inheritance. Kidney Int. 1987;31(5):1140–4.

    Article  CAS  PubMed  Google Scholar 

  163. de Baaij JH, Dorresteijn EM, Hennekam EA, et al. Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia. Nephrol Dial Transplant. 2015;30(6):952–7. https://doi.org/10.1093/ndt/gfv014.

    Article  CAS  PubMed  Google Scholar 

  164. Glaudemans B, van der Wijst J, Scola RH, et al. A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest. 2009;119(4):936–42. 36948 [pii]. https://doi.org/10.1172/JCI36948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Browne DL, Gancher ST, Nutt JG, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet. 1994;8(2):136–40. https://doi.org/10.1038/ng1094-136.

    Article  CAS  PubMed  Google Scholar 

  166. van der Wijst J, Glaudemans B, Venselaar H, et al. Functional analysis of the Kv1.1 N255D mutation associated with autosomal dominant hypomagnesemia. J Biol Chem. 2010;285(1):171–8. M109.041517 [pii]. https://doi.org/10.1074/jbc.M109.041517.

    Article  CAS  PubMed  Google Scholar 

  167. Geven WB, Monnens LA, Willems JL, Buijs W, Hamel CJ. Isolated autosomal recessive renal magnesium loss in two sisters. Clin Genet. 1987;32(6):398–402.

    Article  CAS  PubMed  Google Scholar 

  168. Groenestege WM, Thébault S, van der Wijst J, et al. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest. 2007;117(8):2260–7. https://doi.org/10.1172/JCI31680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Thebault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ. EGF increases TRPM6 activity and surface expression. J Am Soc Nephrol. 2009;20(1):78–85. ASN.2008030327 [pii]. https://doi.org/10.1681/ASN.2008030327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Stuiver M, Lainez S, Will C, et al. CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am J Hum Genet. 2011;88(3):333–43. S0002-9297(11)00053-X [pii]. https://doi.org/10.1016/j.ajhg.2011.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Goytain A, Quamme GA. Functional characterization of ACDP2 (ancient conserved domain protein), a divalent metal transporter. Physiol Genomics. 2005;22(3):382–9. 00058.2005 [pii]. https://doi.org/10.1152/physiolgenomics.00058.2005.

    Article  CAS  PubMed  Google Scholar 

  172. Meyer TE, Verwoert GC, Hwang SJ, et al. Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six Loci influencing serum magnesium levels. PLoS Genet. 2010;6(8):e1001045. https://doi.org/10.1371/journal.pgen.1001045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang CY, Shi JD, Yang P, et al. Molecular cloning and characterization of a novel gene family of four ancient conserved domain proteins (ACDP). Gene. 2003;(306):37–44.

    Google Scholar 

  174. de Baaij JH, Stuiver M, Meij IC, et al. Membrane topology and intracellular processing of cyclin M2 (CNNM2). J Biol Chem. 2012;287(17):13644–55. https://doi.org/10.1074/jbc.M112.342204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Franken GAC, Müller D, Mignot C, et al. Phenotypic and genetic spectrum of patients with heterozygous mutations in cyclin M2 (CNNM2). Hum Mutat. 2021;42(4):473–86. https://doi.org/10.1002/humu.24182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Arjona FJ, de Baaij JH, Schlingmann KP, et al. CNNM2 mutations cause impaired brain development and seizures in patients with hypomagnesemia. PLoS Genet. 2014;10(4):e1004267. https://doi.org/10.1371/journal.pgen.1004267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Accogli A, Scala M, Calcagno A, et al. CNNM2 homozygous mutations cause severe refractory hypomagnesemia, epileptic encephalopathy and brain malformations. Eur J Med Genet. 2019;62(3):198–203. https://doi.org/10.1016/j.ejmg.2018.07.014.

    Article  PubMed  Google Scholar 

  178. Cronan K, ME N. Renal and electrolyte emergencies. In: Fleisher G, S L, eds. Pediatric emergency medicine. 4th ed. Lippincott, Williams & Wilkins; 2000.

    Google Scholar 

  179. Horikawa Y, Iwasaki N, Hara M, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet. 1997;17(4):384–5. https://doi.org/10.1038/ng1297-384.

    Article  CAS  PubMed  Google Scholar 

  180. Faguer S, Decramer S, Chassaing N, et al. Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int. 2011;80(7):768–76. https://doi.org/10.1038/ki.2011.225.

    Article  CAS  PubMed  Google Scholar 

  181. Heidet L, Decramer S, Pawtowski A, et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol. 2010;5(6):1079–90. CJN.06810909 [pii]. https://doi.org/10.2215/CJN.06810909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Adalat S, Woolf AS, Johnstone KA, et al. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol. 2009;20(5):1123–31. ASN.2008060633 [pii]. https://doi.org/10.1681/ASN.2008060633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Adalat S, Hayes WN, Bryant WA, et al. HNF1B mutations are associated with a Gitelman-like Tubulopathy that develops during childhood. Kidney Int Rep. 2019;4(9):1304–11. https://doi.org/10.1016/j.ekir.2019.05.019.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Raaijmakers A, Corveleyn A, Devriendt K, et al. Criteria for HNF1B analysis in patients with congenital abnormalities of kidney and urinary tract. Nephrol Dial Transplant. 2015;30(5):835–42. https://doi.org/10.1093/ndt/gfu370.

    Article  CAS  PubMed  Google Scholar 

  185. Kołbuc M, Leßmeier L, Salamon-Słowińska D, et al. Hypomagnesemia is underestimated in children with HNF1B mutations. Pediatr Nephrol. 2020;35(10):1877–86. https://doi.org/10.1007/s00467-020-04576-6.

    Article  PubMed  Google Scholar 

  186. Ferre S, de Baaij JH, Ferreira P, et al. Mutations in PCBD1 cause hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol. 2014;25(3):574–86. https://doi.org/10.1681/asn.2013040337.

    Article  CAS  PubMed  Google Scholar 

  187. Wilson FH, Hariri A, Farhi A, et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 2004;306(5699):1190–4. 1102521 [pii]. https://doi.org/10.1126/science.1102521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. English MW, Skinner R, Pearson AD, Price L, Wyllie R, Craft AW. Dose-related nephrotoxicity of carboplatin in children. Br J Cancer. 1999;81(2):336–41. https://doi.org/10.1038/sj.bjc.6690697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Goren MP. Cisplatin nephrotoxicity affects magnesium and calcium metabolism. Med Pediatr Oncol. 2003;41(3):186–9. https://doi.org/10.1002/mpo.10335.

    Article  PubMed  Google Scholar 

  190. Boulikas T, Vougiouka M. Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs (review). Oncol Rep. 2004;11(3):559–95.

    CAS  PubMed  Google Scholar 

  191. Lajer H, Daugaard G. Cisplatin and hypomagnesemia. Cancer Treat Rev. 1999;25(1):47–58. S0305-7372(99)90097-X [pii]. https://doi.org/10.1053/ctrv.1999.0097.

    Article  CAS  PubMed  Google Scholar 

  192. Mavichak V, Coppin CM, Wong NL, Dirks JH, Walker V, Sutton RA. Renal magnesium wasting and hypocalciuria in chronic cis-platinum nephropathy in man. Clin Sci (Lond). 1988;75(2):203–7.

    Article  CAS  PubMed  Google Scholar 

  193. Puchalski AR, Hodge MB. Parathyroid hormone resistance from severe hypomagnesaemia caused by cisplatin. Endokrynol Pol. 2020;71(6):577–8. https://doi.org/10.5603/EP.a2020.0061.

    Article  PubMed  Google Scholar 

  194. Bianchetti MG, Kanaka C, Ridolfi-Lüthy A, Hirt A, Wagner HP, Oetliker OH. Persisting renotubular sequelae after cisplatin in children and adolescents. Am J Nephrol. 1991;11(2):127–30.

    Article  CAS  PubMed  Google Scholar 

  195. Markmann M, Rothman R, Reichman B, et al. Persistent hypomagnesemia following cisplatin chemotherapy in patients with ovarian cancer. J Cancer Res Clin Oncol. 1991;117(2):89–90.

    Article  CAS  PubMed  Google Scholar 

  196. Ledeganck KJ, Boulet GA, Bogers JJ, Verpooten GA, De Winter BY. The TRPM6/EGF pathway is downregulated in a rat model of cisplatin nephrotoxicity. PLoS One. 2013;8(2):e57016. https://doi.org/10.1371/journal.pone.0057016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Yoshida T, Niho S, Toda M, et al. Protective effect of magnesium preloading on cisplatin-induced nephrotoxicity: a retrospective study. Jpn J Clin Oncol. 2014;44(4):346–54. https://doi.org/10.1093/jjco/hyu004.

    Article  PubMed  Google Scholar 

  198. Shah GM, Kirschenbaum MA. Renal magnesium wasting associated with therapeutic agents. Miner Electrolyte Metab. 1991;17(1):58–64.

    CAS  PubMed  Google Scholar 

  199. Elliott C, Newman N, Madan A. Gentamicin effects on urinary electrolyte excretion in healthy subjects. Clin Pharmacol Ther. 2000;67(1):16–21. S0009-9236(00)47829-X [pii]. https://doi.org/10.1067/mcp.2000.103864.

    Article  CAS  PubMed  Google Scholar 

  200. Giapros VI, Cholevas VI, Andronikou SK. Acute effects of gentamicin on urinary electrolyte excretion in neonates. Pediatr Nephrol. 2004;19(3):322–5. https://doi.org/10.1007/s00467-003-1381-0.

    Article  PubMed  Google Scholar 

  201. Ward DT, McLarnon SJ, Riccardi D. Aminoglycosides increase intracellular calcium levels and ERK activity in proximal tubular OK cells expressing the extracellular calcium-sensing receptor. J Am Soc Nephrol. 2002;13(6):1481–9.

    Article  CAS  PubMed  Google Scholar 

  202. Lee CT, Chen HC, Ng HY, Lai LW, Lien YH. Renal adaptation to gentamicin-induced mineral loss. Am J Nephrol. 2012;35(3):279–86. https://doi.org/10.1159/000336518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Rob PM, Lebeau A, Nobiling R, et al. Magnesium metabolism: basic aspects and implications of ciclosporine toxicity in rats. Nephron. 1996;72(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  204. Lote CJ, Thewles A, Wood JA, Zafar T. The hypomagnesaemic action of FK506: urinary excretion of magnesium and calcium and the role of parathyroid hormone. Clin Sci (Lond). 2000;99(4):285–92.

    Article  CAS  PubMed  Google Scholar 

  205. Chang CT, Hung CC, Tian YC, Yang CW, Wu MS. Ciclosporin reduces paracellin-1 expression and magnesium transport in thick ascending limb cells. Nephrol Dial Transplant. 2007;22(4):1033–40. https://doi.org/10.1093/ndt/gfl817.

    Article  CAS  PubMed  Google Scholar 

  206. Nijenhuis T, Hoenderop JG, Bindels RJ. Downregulation of Ca(2+) and Mg(2+) transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol. 2004;15(3):549–57.

    Article  CAS  PubMed  Google Scholar 

  207. Ledeganck KJ, De Winter BY, Van den Driessche A, et al. Magnesium loss in cyclosporine-treated patients is related to renal epidermal growth factor downregulation. Nephrol Dial Transplant. 2014;29(5):1097–102. https://doi.org/10.1093/ndt/gft498.

  208. Ledeganck KJ, Anné C, De Monie A, et al. Longitudinal study of the role of epidermal growth factor on the fractional excretion of magnesium in children: effect of calcineurin inhibitors. Nutrients. 2018;10(6):677. https://doi.org/10.3390/nu10060677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Tejpar S, Piessevaux H, Claes K, et al. Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol. 2007;8(5):387–94. S1470-2045(07)70108-0 [pii]. https://doi.org/10.1016/S1470-2045(07)70108-0.

    Article  CAS  PubMed  Google Scholar 

  210. Cao Y, Liao C, Tan A, Liu L, Gao F. Meta-analysis of incidence and risk of hypomagnesemia with cetuximab for advanced cancer. Chemotherapy. 2010;56(6):459–65. 000321011 [pii]. https://doi.org/10.1159/000321011.

    Article  CAS  PubMed  Google Scholar 

  211. Kimura M, Usami E, Teramachi H, Yoshimura T. Identifying optimal magnesium replenishment points based on risk of severe hypomagnesemia in colorectal cancer patients treated with cetuximab or panitumumab. Cancer Chemother Pharmacol. 2020;86(3):383–91. https://doi.org/10.1007/s00280-020-04126-9.

    Article  CAS  PubMed  Google Scholar 

  212. Fujii H, Iihara H, Suzuki A, et al. Hypomagnesemia is a reliable predictor for efficacy of anti-EGFR monoclonal antibody used in combination with first-line chemotherapy for metastatic colorectal cancer. Cancer Chemother Pharmacol. 2016;77(6):1209–15. https://doi.org/10.1007/s00280-016-3039-1.

    Article  CAS  PubMed  Google Scholar 

  213. Vickers MM, Karapetis CS, Tu D, et al. Association of hypomagnesemia with inferior survival in a phase III, randomized study of cetuximab plus best supportive care versus best supportive care alone: NCIC CTG/AGITG CO.17. Ann Oncol. 2013;24(4):953–60. https://doi.org/10.1093/annonc/mds577.

    Article  CAS  PubMed  Google Scholar 

  214. Cundy T, Mackay J. Proton pump inhibitors and severe hypomagnesaemia. Curr Opin Gastroenterol. 2011;27(2):180–5. https://doi.org/10.1097/MOG.0b013e32833ff5d6.

    Article  CAS  PubMed  Google Scholar 

  215. Epstein M, McGrath S, Law F. Proton-pump inhibitors and hypomagnesemic hypoparathyroidism. N Engl J Med. 2006;355(17):1834–6. 355/17/1834 [pii]. https://doi.org/10.1056/NEJMc066308.

    Article  CAS  PubMed  Google Scholar 

  216. Shabajee N, Lamb EJ, Sturgess I, Sumathipala RW. Omeprazole and refractory hypomagnesaemia. BMJ. 2008;337:a425. https://doi.org/10.1136/bmj.39505.738981.BE.

    Article  CAS  PubMed  Google Scholar 

  217. Ahmad ASR. Disorders of magnesium metabolism. The kidney: physiology and pathophysiology. New York: Raven Press; 2000. p. 1732–48.

    Google Scholar 

  218. Agus ZS. Hypomagnesemia. J Am Soc Nephrol. 1999;10(7):1616–22.

    Article  CAS  PubMed  Google Scholar 

  219. Koo W, RC T. Calcium and magnesium homeostasis. In: Avery G, Fletcher M, MacDonald M, eds. Neonatology—pathophysiology and management of the newborn. 5th ed. Lippincott Williams & Wilkins; 1999. p. 730.

    Google Scholar 

  220. P G, Reed M. Medications. In: Behrman R, Kliegman R, Jenson H, eds. Textbook of pediatrics. 16th ed. WB Saunders; 2000.

    Google Scholar 

  221. Ranade VV, Somberg JC. Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to humans. Am J Ther. 2001;8(5):345–57.

    Article  CAS  PubMed  Google Scholar 

  222. Ryan MP. Magnesium and potassium-sparing diuretics. Magnesium. 1986;5(5–6):282–92.

    CAS  PubMed  Google Scholar 

  223. Netzer T, Knauf H, Mutschler E. Modulation of electrolyte excretion by potassium retaining diuretics. Eur Heart J. 1992;13 Suppl G:22–7.

    Article  CAS  PubMed  Google Scholar 

  224. Colussi G, Rombola G, De Ferrari ME, Macaluso M, Minetti L. Correction of hypokalemia with antialdosterone therapy in Gitelman’s syndrome. Am J Nephrol. 1994;14(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  225. Bundy JT, Connito D, Mahoney MD, Pontier PJ. Treatment of idiopathic renal magnesium wasting with amiloride. Am J Nephrol. 1995;15(1):75–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Konrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schlingmann, K.P., Konrad, M. (2023). Disorders of Calcium and Magnesium Metabolism. In: Schaefer, F., Greenbaum, L.A. (eds) Pediatric Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-11665-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11665-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11664-3

  • Online ISBN: 978-3-031-11665-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics