Skip to main content

The Role of Neuropeptides in Skin Wound Healing

  • Living reference work entry
  • First Online:
Textbook of Aging Skin
  • 825 Accesses

Abstract

The skin offers a well suited and clinically relevant model for studying communication between peripheral and central nervous system (CNS), due to its close connection with the brain. A variety of molecules such as neuropeptides, neurohormones, and neurotrophins and their specific receptors are expressed in both neuronal and skin cells, indicating a close functional interaction between the neurons and the skin. The skin acts as a protective barrier against mechanical and chemical damages; therefore, cutaneous innervation plays a critical role in modulating the wound healing process which functions in an orderly and timely manner to rebuild the skin’s integrity and homeostasis. Furthermore, all these neuromediators are involved during all phases of the wound healing process. Neuropeptides circulate between the brain and peripheral tissues and functions as neurotransmitters, neuromodulators, and neurohormones. Neuropeptides have immunoregulatory roles and exhibit mitogenic property, which influence the function of various types of skin cells during the wound healing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Boulais N, Misery L. The epidermis: a sensory tissue. Eur J Dermatol. 2008;18:119–27.

    PubMed  Google Scholar 

  2. Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 2000;80:979–1020.

    CAS  PubMed  Google Scholar 

  3. Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Steketee JD. Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv Anat Embryol Cell Biol. 2012; 212: v, vii, 1–115.

    Google Scholar 

  4. Farber EM, Nickoloff BJ, Recht B, Fraki JE. Stress, symmetry, and psoriasis: possible role of neuropeptides. J Am Acad Dermatol. 1986;14:305–11.

    Article  CAS  PubMed  Google Scholar 

  5. Cheret J, Lebonvallet N, Carre JL, Misery L, Le Gall-Ianotto C. Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing. Wound Repair Regen. 2013;21:772–88.

    Article  PubMed  Google Scholar 

  6. Theoret C. Tissue engineering in wound repair: the three “R”s–repair, replace, regenerate. Vet Surg. 2009;38:905–13.

    Article  PubMed  Google Scholar 

  7. Borena BM, Martens A, Broeckx SY, Meyer E, Chiers K, Duchateau L, Spaas JH. Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cell Physiol Biochem. 2015;36:1–23.

    Article  CAS  PubMed  Google Scholar 

  8. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.

    Article  CAS  PubMed  Google Scholar 

  9. da Silva L, Carvalho E, Cruz MT. Role of neuropeptides in skin inflammation and its involvement in diabetic wound healing. Expert Opin Biol Ther. 2010;10:1427–39.

    Article  PubMed  CAS  Google Scholar 

  10. Yamaoka J, Di ZH, Sun W, Kawana S. Erratum to “changes in cutaneous sensory nerve fibers induced by skin-scratching in mice”. J Dermatol Sci. 2007;47:172–82.

    Article  PubMed  Google Scholar 

  11. Joachim RA, Kuhlmei A, Dinh QT, Handjiski B, Fischer T, Peters EM, Klapp BF, Paus R, Arck PC. Neuronal plasticity of the “brain-skin connection”: stress-triggered up-regulation of neuropeptides in dorsal root ganglia and skin via nerve growth factor-dependent pathways. J Mol Med. 2007;85:1369–78.

    Article  CAS  PubMed  Google Scholar 

  12. Datar P, Srivastava S, Coutinho E, Govil G. Substance P: structure, function, and therapeutics. Curr Top Med Chem. 2004;4:75–103.

    Article  CAS  PubMed  Google Scholar 

  13. Harrison S, Geppetti P. Substance p. Int J Biochem Cell Biol. 2001;33:555–76.

    Article  CAS  PubMed  Google Scholar 

  14. Otsuka M, Yoshioka K. Neurotransmitter functions of mammalian tachykinins. Physiol Rev. 1993;73:229–308.

    CAS  PubMed  Google Scholar 

  15. Simone DA, Nolano M, Johnson T, Wendelschafer-Crabb G, Kennedy WR. Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function. J Neurosci. 1998;18:8947–59.

    CAS  PubMed  Google Scholar 

  16. Schulze E, Witt M, Fink T, Hofer A, Funk RH. Immunohistochemical detection of human skin nerve fibers. Acta Histochem. 1997;99:301–9.

    Article  CAS  PubMed  Google Scholar 

  17. Liu JY, Hu JH, Zhu QG, Li FQ, Sun HJ. Substance P receptor expression in human skin keratinocytes and fibroblasts. Br J Dermatol. 2006;155:657–62.

    Article  CAS  PubMed  Google Scholar 

  18. Pernow B. Substance P. Pharmacol Rev. 1983;35:85–141.

    CAS  PubMed  Google Scholar 

  19. Baluk P. Neurogenic inflammation in skin and airways. J Investig Dermatol Symp Proc. 1997; 2: 76–81.

    Google Scholar 

  20. Scott JR, Tamura RN, Muangman P, Isik FF, Xie C, Gibran NS. Topical substance P increases inflammatory cell density in genetically diabetic murine wounds. Wound Repair Regen. 2008;16:529–33.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Jain M, LoGerfo FW, Guthrie P, Pradhan L. Effect of hyperglycemia and neuropeptides on interleukin-8 expression and angiogenesis in dermal microvascular endothelial cells. J Vasc Surg. 2011;53:1654–60. e2.

    Article  PubMed  Google Scholar 

  22. Walsh DA, Hu DE, Mapp PI, Polak JM, Blake DR, Fan TP. Innervation and neurokinin receptors during angiogenesis in the rat sponge granuloma. Histochem J. 1996;28:759–69.

    Article  CAS  PubMed  Google Scholar 

  23. Wiedermann CJ, Auer B, Sitte B, Reinisch N, Schratzberger P, Kahler CM. Induction of endothelial cell differentiation into capillary-like structures by substance P. Eur J Pharmacol. 1996;298:335–8.

    Article  CAS  PubMed  Google Scholar 

  24. Altun V, Hakvoort TE, van Zuijlen PP, van der Kwast TH, Prens EP. Nerve outgrowth and neuropeptide expression during the remodeling of human burn wound scars. A 7-month follow-up study of 22 patients. Burns. 2001;27:717–22.

    Article  CAS  PubMed  Google Scholar 

  25. Delgado AV, McManus AT, Chambers JP. Exogenous administration of Substance P enhances wound healing in a novel skin-injury model. Exp Biol Med. 2005;230:271–80.

    CAS  Google Scholar 

  26. Gibran NS, Tamura R, Tsou R, Isik FF. Human dermal microvascular endothelial cells produce nerve growth factor: implications for wound repair. Shock. 2003;19:127–30.

    Article  CAS  PubMed  Google Scholar 

  27. McGovern UB, Jones KT, Sharpe GR. Intracellular calcium as a second messenger following growth stimulation of human keratinocytes. Br J Dermatol. 1995;132:892–6.

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka T, Danno K, Ikai K, Imamura S. Effects of substance P and substance K on the growth of cultured keratinocytes. J Invest Dermatol. 1988;90:399–401.

    Article  CAS  PubMed  Google Scholar 

  29. Nilsson J, von Euler AM, Dalsgaard CJ. Stimulation of connective tissue cell growth by substance P and substance K. Nature. 1985;315:61–3.

    Article  CAS  PubMed  Google Scholar 

  30. Parenti A, Amerini S, Ledda F, Maggi CA, Ziche M. The tachykinin NK1 receptor mediates the migration-promoting effect of substance P on human skin fibroblasts in culture. Naunyn Schmiedebergs Arch Pharmacol. 1996;353:475–81.

    Article  CAS  PubMed  Google Scholar 

  31. Ziche M, Morbidelli L, Pacini M, Dolara P, Maggi CA. NK1-receptors mediate the proliferative response of human fibroblasts to tachykinins. Br J Pharmacol. 1990;100:11–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lai X, Wang Z, Wei L, Wang L. Effect of substance P released from peripheral nerve ending on endogenous expression of epidermal growth factor and its receptor in wound healing. Chin J Traumatol. 2002;5:176–9.

    CAS  PubMed  Google Scholar 

  33. Luger TA, Lotti T. Neuropeptides: role in inflammatory skin diseases. J Eur Acad Dermatol Venereol. 1998;10:207–11.

    Article  CAS  PubMed  Google Scholar 

  34. Wei T, Guo TZ, Li WW, Hou S, Kingery WS, Clark JD. Keratinocyte expression of inflammatory mediators plays a crucial role in substance P-induced acute and chronic pain. J Neuroinflammation. 2012;9:181.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Olerud JE, Usui ML, Seckin D, Chiu DS, Haycox CL, Song IS, Ansel JC, Bunnett NW. Neutral endopeptidase expression and distribution in human skin and wounds. J Invest Dermatol. 1999;112:873–81.

    Article  CAS  PubMed  Google Scholar 

  36. Levy DM, Karanth SS, Springall DR, Polak JM. Depletion of cutaneous nerves and neuropeptides in diabetes mellitus: an immunocytochemical study. Diabetologia. 1989;32:427–33.

    Article  CAS  PubMed  Google Scholar 

  37. Scholzen TE, Luger TA. Neutral endopeptidase and angiotensin-converting enzyme – key enzymes terminating the action of neuroendocrine mediators. Exp Dermatol. 2004;13 Suppl 4:22–6.

    Article  CAS  PubMed  Google Scholar 

  38. Antezana M, Sullivan SR, Usui M, Gibran N, Spenny M, Larsen J, Ansel J, Bunnett N, Olerud J. Neutral endopeptidase activity is increased in the skin of subjects with diabetic ulcers. J Invest Dermatol. 2002;119:1400–4.

    Article  CAS  PubMed  Google Scholar 

  39. Pradhan L, Cai X, Wu S, Andersen ND, Martin M, Malek J, Guthrie P, Veves A, Logerfo FW. Gene expression of pro-inflammatory cytokines and neuropeptides in diabetic wound healing. J Surg Res. 2011;167:336–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gibran NS, Jang YC, Isik FF, Greenhalgh DG, Muffley LA, Underwood RA, Usui ML, Larsen J, Smith DG, Bunnett N, Ansel JC, Olerud JE. Diminished neuropeptide levels contribute to the impaired cutaneous healing response associated with diabetes mellitus. J Surg Res. 2002;108:122–8.

    Article  CAS  PubMed  Google Scholar 

  41. Younan G, Ogawa R, Ramirez M, Helm D, Dastouri P, Orgill DP. Analysis of nerve and neuropeptide patterns in vacuum-assisted closure-treated diabetic murine wounds. Plast Reconstr Surg. 2010;126:87–96.

    Article  CAS  PubMed  Google Scholar 

  42. Kishimoto S. The regeneration of substance P-containing nerve fibers in the process of burn wound healing in the guinea pig skin. J Invest Dermatol. 1984;83:219–23.

    Article  CAS  PubMed  Google Scholar 

  43. Dunnick CA, Gibran NS, Heimbach DM. Substance P has a role in neurogenic mediation of human burn wound healing. J Burn Care Rehabil. 1996;17:390–6.

    Article  CAS  PubMed  Google Scholar 

  44. Nakanishi S. Molecular mechanisms of intercellular communication in the hormonal and neural systems. IUBMB Life. 2006;58:349–57.

    Article  CAS  PubMed  Google Scholar 

  45. Schaffer DA, Gabriel R. Two major tachykinins, substance P and substance K, are localized to distinct subsets of amacrine cells in the anuran retina. Neurosci Lett. 2005;386:194–8.

    Article  PubMed  CAS  Google Scholar 

  46. Burbach GJ, Kim KH, Zivony AS, Kim A, Aranda J, Wright S, Naik SM, Caughman SW, Ansel JC, Armstrong CA. The neurosensory tachykinins substance P and neurokinin A directly induce keratinocyte nerve growth factor. J Invest Dermatol. 2001;117:1075–82.

    Article  CAS  PubMed  Google Scholar 

  47. Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94:1099–142.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Caviedes-Bucheli J, Moreno GC, Lopez MP, Bermeo-Noguera AM, Pacheco-Rodriguez G, Cuellar A, Munoz HR. Calcitonin gene-related peptide receptor expression in alternatively activated monocytes/macrophages during irreversible pulpitis. J Endod. 2008;34:945–9.

    Article  PubMed  Google Scholar 

  49. Hagner S, Stahl U, Knoblauch B, McGregor GP, Lang RE. Calcitonin receptor-like receptor: identification and distribution in human peripheral tissues. Cell Tissue Res. 2002;310:41–50.

    Article  CAS  PubMed  Google Scholar 

  50. Hou Q, Barr T, Gee L, Vickers J, Wymer J, Borsani E, Rodella L, Getsios S, Burdo T, Eisenberg E, Guha U, Lavker R, Kessler J, Chittur S, Fiorino D, Rice F, Albrecht P. Keratinocyte expression of calcitonin gene-related peptide beta: implications for neuropathic and inflammatory pain mechanisms. Pain. 2011;152:2036–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I. Calcitonin gene-related peptide is a potent vasodilator. Nature. 1985;313:54–6.

    Article  CAS  PubMed  Google Scholar 

  52. Gibbins IL, Wattchow D, Coventry B. Two immunohistochemically identified populations of calcitonin gene-related peptide (CGRP)-immunoreactive axons in human skin. Brain Res. 1987;414:143–8.

    Article  CAS  PubMed  Google Scholar 

  53. Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev. 2006;86:1309–79.

    Article  CAS  PubMed  Google Scholar 

  54. Cheret J, Lebonvallet N, Buhe V, Carre JL, Misery L, Le Gall-Ianotto C. Influence of sensory neuropeptides on human cutaneous wound healing process. J Dermatol Sci. 2014;74:193–203.

    Article  CAS  PubMed  Google Scholar 

  55. Kjartansson J, Dalsgaard CJ. Calcitonin gene-related peptide increases survival of a musculocutaneous critical flap in the rat. Eur J Pharmacol. 1987;142:355–8.

    Article  CAS  PubMed  Google Scholar 

  56. Karanth SS, Dhital S, Springall DR, Polak JM. Reinnervation and neuropeptides in mouse skin flaps. J Auton Nerv Syst. 1990;31:127–34.

    Article  CAS  PubMed  Google Scholar 

  57. Khalil Z, Helme R. Sensory peptides as neuromodulators of wound healing in aged rats. J Gerontol A Biol Sci Med Sci. 1996;51:B354–61.

    Article  CAS  PubMed  Google Scholar 

  58. Grant AD, Tam CW, Lazar Z, Shih MK, Brain SD. The calcitonin gene-related peptide (CGRP) receptor antagonist BIBN4096BS blocks CGRP and adrenomedullin vasoactive responses in the microvasculature. Br J Pharmacol. 2004;142:1091–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Toda M, Suzuki T, Hosono K, Kurihara Y, Kurihara H, Hayashi I, Kitasato H, Hoka S, Majima M. Roles of calcitonin gene-related peptide in facilitation of wound healing and angiogenesis. Biomed Pharmacother. 2008;62:352–9.

    Article  CAS  PubMed  Google Scholar 

  60. Roggenkamp D, Kopnick S, Stab F, Wenck H, Schmelz M, Neufang G. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. J Invest Dermatol. 2013;133:1620–8.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou Y, Zhang M, Sun GY, Liu YP, Ran WZ, Peng L, Guan CX. Calcitonin gene-related peptide promotes the wound healing of human bronchial epithelial cells via PKC and MAPK pathways. Regul Pept. 2013;184:22–9.

    Article  CAS  PubMed  Google Scholar 

  62. Singaram C, Sengupta A, Stevens C, Spechler SJ, Goyal RK. Localization of calcitonin gene-related peptide in human esophageal Langerhans cells. Gastroenterology. 1991;100:560–3.

    CAS  PubMed  Google Scholar 

  63. Zaidi M, Moonga BS, Bevis PJ, Bascal ZA, Breimer LH. The calcitonin gene peptides: biology and clinical relevance. Crit Rev Clin Lab Sci. 1990;28:109–74.

    Article  CAS  PubMed  Google Scholar 

  64. Garcia-Caballero T, Gallego R, Roson E, Fraga M, Beiras A. Calcitonin gene-related peptide (CGRP) immunoreactivity in the neuroendocrine Merkel cells and nerve fibres of pig and human skin. Histochemistry. 1989;92:127–32.

    Article  CAS  PubMed  Google Scholar 

  65. Dalsgaard CJ, Jernbeck J, Stains W, Kjartansson J, Haegerstrand A, Hokfelt T, Brodin E, Cuello AC, Brown JC. Calcitonin gene-related peptide-like immunoreactivity in nerve fibers in the human skin. Relation to fibers containing substance P-, somatostatin- and vasocactive intestinalpolypeptide-like immunoreactivity. Histochemistry. 1989;91:35–8.

    Article  CAS  PubMed  Google Scholar 

  66. Hosoi J, Murphy GF, Egan CL, Lerner EA, Grabbe S, Asahina A, Granstein RD. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature. 1993;363:159–63.

    Article  CAS  PubMed  Google Scholar 

  67. Onuoha GN, Alpar EK. Levels of vasodilators (SP, CGRP) and vasoconstrictor (NPY) peptides in early human burns. Eur J Clin Invest. 2001;31:253–7.

    Article  CAS  PubMed  Google Scholar 

  68. Onuoha GN, Alpar EK. Calcitonin gene-related peptide and other neuropeptides in the plasma of patients with soft tissue injury. Life Sci. 1999;65:1351–8.

    Article  CAS  PubMed  Google Scholar 

  69. Tatemoto K. Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Natl Acad Sci U S A. 1982;79:5485–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Decressac M, Barker RA. Neuropeptide Y and its role in CNS disease and repair. Exp Neurol. 2012;238:265–72.

    Article  CAS  PubMed  Google Scholar 

  71. Donoso MV, Miranda R, Irarrazaval MJ, Huidobro-Toro JP. Neuropeptide Y is released from human mammary and radial vascular biopsies and is a functional modulator of sympathetic cotransmission. J Vasc Res. 2004;41:387–99.

    Article  CAS  PubMed  Google Scholar 

  72. Donoso MV, Miranda R, Briones R, Irarrazaval MJ, Huidobro-Toro JP. Release and functional role of neuropeptide Y as a sympathetic modulator in human saphenous vein biopsies. Peptides. 2004;25:53–64.

    Article  CAS  PubMed  Google Scholar 

  73. Johnson MI, Tabasam G. A single-blind investigation into the hypoalgesic effects of different swing patterns of interferential currents on cold-induced pain in healthy volunteers. Arch Phys Med Rehabil. 2003;84:350–7.

    Article  PubMed  Google Scholar 

  74. Pedrazzini T, Pralong F, Grouzmann E. Neuropeptide Y: the universal soldier. Cell Mol Life Sci. 2003;60:350–77.

    Article  CAS  PubMed  Google Scholar 

  75. Polak JM, Bloom SR. Regulatory peptides–the distribution of two newly discovered peptides: PHI and NPY. Peptides. 1984;5 Suppl 1:79–89.

    Article  CAS  PubMed  Google Scholar 

  76. Tainio H, Vaalasti A, Rechardt L. The distribution of sympathetic adrenergic, tyrosine hydroxylase- and neuropeptide Y-immunoreactive nerves in human axillary sweat glands. Histochemistry. 1986;85:117–20.

    Article  CAS  PubMed  Google Scholar 

  77. Ghersi G, Chen W, Lee EW, Zukowska Z. Critical role of dipeptidyl peptidase IV in neuropeptide Y-mediated endothelial cell migration in response to wounding. Peptides. 2001;22:453–8.

    Article  CAS  PubMed  Google Scholar 

  78. Zukowska-Grojec Z, Karwatowska-Prokopczuk E, Rose W, Rone J, Movafagh S, Ji H, Yeh Y, Chen WT, Kleinman HK, Grouzmann E, Grant DS. Neuropeptide Y: a novel angiogenic factor from the sympathetic nerves and endothelium. Circ Res. 1998;83:187–95.

    Article  CAS  PubMed  Google Scholar 

  79. Marion-Audibert AM, Nejjari M, Pourreyron C, Anderson W, Gouysse G, Jacquier MF, Dumortier J, Scoazec JY. Effects of endocrine peptides on proliferation, migration and differentiation of human endothelial cells. Gastroenterol Clin Biol. 2000;24:644–8.

    CAS  PubMed  Google Scholar 

  80. Ekstrand AJ, Cao R, Bjorndahl M, Nystrom S, Jonsson-Rylander AC, Hassani H, Hallberg B, Nordlander M, Cao Y. Deletion of neuropeptide Y (NPY) 2 receptor in mice results in blockage of NPY-induced angiogenesis and delayed wound healing. Proc Natl Acad Sci U S A. 2003;100:6033–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Ahlborg G, Lundberg JM. Exercise-induced changes in neuropeptide Y, noradrenaline and endothelin-1 levels in young people with type I diabetes. Clin Physiol. 1996;16:645–55.

    Article  CAS  PubMed  Google Scholar 

  82. Kuncova J, Sviglerova J, Tonar Z, Slavikova J. Heterogenous changes in neuropeptide Y, norepinephrine and epinephrine concentrations in the hearts of diabetic rats. Auton Neurosci. 2005;121:7–15.

    Article  CAS  PubMed  Google Scholar 

  83. Umetsu Y, Tenno T, Goda N, Shirakawa M, Ikegami T, Hiroaki H. Structural difference of vasoactive intestinal peptide in two distinct membrane-mimicking environments. Biochim Biophys Acta. 1814;2011:724–30.

    Google Scholar 

  84. Zudenigo D, Lackovic Z. Vasoactive intestinal polypeptide: a potential neurotransmitter. Lijec Vjesn. 1989;111:354–9.

    CAS  PubMed  Google Scholar 

  85. Granoth R, Fridkin M, Gozes I. VIP and the potent analog, stearyl-Nle(17)-VIP, induce proliferation of keratinocytes. FEBS Lett. 2000;475:78–83.

    Article  CAS  PubMed  Google Scholar 

  86. Kakurai M, Demitsu T, Umemoto N, Kobayashi Y, Inoue-Narita T, Fujita N, Ohtsuki M, Furukawa Y. Vasoactive intestinal peptide and inflammatory cytokines enhance vascular endothelial growth factor production from epidermal keratinocytes. Br J Dermatol. 2009;161:1232–8.

    Article  CAS  PubMed  Google Scholar 

  87. Dallos A, Kiss M, Polyanka H, Dobozy A, Kemeny L, Husz S. Effects of the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide and galanin on the production of nerve growth factor and inflammatory cytokines in cultured human keratinocytes. Neuropeptides. 2006;40:251–63.

    Article  CAS  PubMed  Google Scholar 

  88. Yang J, Zong CH, Zhao ZH, Hu XD, Shi QD, Xiao XL, Liu Y. Vasoactive intestinal peptide in rats with focal cerebral ischemia enhances angiogenesis. Neuroscience. 2009;161:413–21.

    Article  CAS  PubMed  Google Scholar 

  89. Collado B, Carmena MJ, Clemente C, Prieto JC, Bajo AM. Vasoactive intestinal peptide enhances growth and angiogenesis of human experimental prostate cancer in a xenograft model. Peptides. 2007;28:1896–901.

    Article  CAS  PubMed  Google Scholar 

  90. Rayan GM, Johnson C, Pitha J, Cahill S, Said S. Vasoactive intestinal peptide and nerve growth factor effects on nerve regeneration. J Okla State Med Assoc. 1995;88:337–41.

    CAS  PubMed  Google Scholar 

  91. Bjorklund H, Dalsgaard CJ, Jonsson CE, Hermansson A. Sensory and autonomic innervation of non-hairy and hairy human skin. An immunohistochemical study. Cell Tissue Res. 1986;243:51–7.

    Article  CAS  PubMed  Google Scholar 

  92. Conconi MT, Spinazzi R, Nussdorfer GG. Endogenous ligands of PACAP/VIP receptors in the autocrine-paracrine regulation of the adrenal gland. Int Rev Cytol. 2006;249:1–51.

    Article  CAS  PubMed  Google Scholar 

  93. Fischer TC, Hartmann P, Loser C, Springer J, Peiser C, Dinh QT, Fischer A, Groneberg DA. Abundant expression of vasoactive intestinal polypeptide receptor VPAC2 mRNA in human skin. J Invest Dermatol. 2001;117:754–6.

    Article  CAS  PubMed  Google Scholar 

  94. Granoth R, Fridkin M, Rubinraut S, Gozes I. VIP-derived sequences modified by N-terminal stearyl moiety induce cell death: the human keratinocyte as a model. FEBS Lett. 2000;475:71–7.

    Article  CAS  PubMed  Google Scholar 

  95. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BK, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev. 2009;61:283–357.

    Article  CAS  PubMed  Google Scholar 

  96. Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C. Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology. 1991;129:2787–9.

    Article  CAS  PubMed  Google Scholar 

  97. Arimura A, Shioda S. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interaction. Front Neuroendocrinol. 1995;16:53–88.

    Article  CAS  PubMed  Google Scholar 

  98. Odum L, Petersen LJ, Skov PS, Ebskov LB. Pituitary adenylate cyclase activating polypeptide (PACAP) is localized in human dermal neurons and causes histamine release from skin mast cells. Inflamm Res. 1998;47:488–92.

    Article  CAS  PubMed  Google Scholar 

  99. Cardell LO, Stjarne P, Wagstaff SJ, Agusti C, Nadel JA. PACAP-induced plasma extravasation in rat skin. Regul Pept. 1997;71:67–71.

    Article  CAS  PubMed  Google Scholar 

  100. Merali Z, McIntosh J, Anisman H. Role of bombesin-related peptides in the control of food intake. Neuropeptides. 1999;33:376–86.

    Article  CAS  PubMed  Google Scholar 

  101. Tominaga M, Ogawa H, Takamori K. Histological characterization of cutaneous nerve fibers containing gastrin-releasing peptide in NC/Nga mice: an atopic dermatitis model. J Invest Dermatol. 2009;129:2901–5.

    Article  CAS  PubMed  Google Scholar 

  102. Andoh T, Kuwazono T, Lee JB, Kuraishi Y. Gastrin-releasing peptide induces itch-related responses through mast cell degranulation in mice. Peptides. 2011;32:2098–103.

    Article  CAS  PubMed  Google Scholar 

  103. Regauer S, Compton CC. Cultured keratinocyte sheets enhance spontaneous re-epithelialization in a dermal explant model of partial-thickness wound healing. J Invest Dermatol. 1990;95:341–6.

    Article  CAS  PubMed  Google Scholar 

  104. Yamaguchi Y, Hosokawa K, Nakatani Y, Sano S, Yoshikawa K, Itami S. Gastrin-releasing peptide, a bombesin-like neuropeptide, promotes cutaneous wound healing. Dermatol Surg. 2002;28:314–9.

    PubMed  Google Scholar 

  105. Vincent JP, Mazella J, Kitabgi P. Neurotensin and neurotensin receptors. Trends Pharmacol Sci. 1999;20:302–9.

    Article  CAS  PubMed  Google Scholar 

  106. da Silva L, Neves BM, Moura L, Cruz MT, Carvalho E. Neurotensin downregulates the pro-inflammatory properties of skin dendritic cells and increases epidermal growth factor expression. Biochim Biophys Acta. 1813;2011:1863–71.

    Google Scholar 

  107. Pereira da Silva L, Miguel Neves B, Moura L, Cruz MT, Carvalho E. Neurotensin decreases the proinflammatory status of human skin fibroblasts and increases epidermal growth factor expression. Int J Inflam. 2014;2014:248240.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Mitsukawa K, Lu X, Bartfai T. Galanin, galanin receptors and drug targets. Cell Mol Life Sci. 2008;65:1796–805.

    Article  CAS  PubMed  Google Scholar 

  109. Bauer JW, Lang R, Jakab M, Kofler B. Galanin family of peptides in skin function. Cell Mol Life Sci. 2008;65:1820–5.

    Article  CAS  PubMed  Google Scholar 

  110. Kofler B, Berger A, Santic R, Moritz K, Almer D, Tuechler C, Lang R, Emberger M, Klausegger A, Sperl W, Bauer JW. Expression of neuropeptide galanin and galanin receptors in human skin. J Invest Dermatol. 2004;122:1050–3.

    Article  CAS  PubMed  Google Scholar 

  111. Hokfelt T, Wiesenfeld-Hallin Z, Villar M, Melander T. Increase of galanin-like immunoreactivity in rat dorsal root ganglion cells after peripheral axotomy. Neurosci Lett. 1987;83:217–20.

    Article  CAS  PubMed  Google Scholar 

  112. Hokfelt T, Zhang X, Wiesenfeld-Hallin Z. Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci. 1994;17:22–30.

    Article  CAS  PubMed  Google Scholar 

  113. Holmes FE, Mahoney SA, Wynick D. Use of genetically engineered transgenic mice to investigate the role of galanin in the peripheral nervous system after injury. Neuropeptides. 2005;39:191–9.

    Article  CAS  PubMed  Google Scholar 

  114. Dallos A, Kiss M, Polyanka H, Dobozy A, Kemeny L, Husz S. Galanin receptor expression in cultured human keratinocytes and in normal human skin. J Peripher Nerv Syst. 2006;11:156–64.

    Article  CAS  PubMed  Google Scholar 

  115. Jimenez-Andrade JM, Zhou S, Yamani A, Valencia de Ita S, Castaneda-Hernandez G, Carlton SM. Mechanism by which peripheral galanin increases acute inflammatory pain. Brain Res. 2005;1056:113–7.

    Article  CAS  PubMed  Google Scholar 

  116. Holden JE, Jeong Y, Forrest JM. The endogenous opioid system and clinical pain management. AACN Clin Issues. 2005;16:291–301.

    Article  PubMed  Google Scholar 

  117. Waldhoer M, Bartlett SE, Whistler JL. Opioid receptors. Annu Rev Biochem. 2004;73:953–90.

    Article  CAS  PubMed  Google Scholar 

  118. Bigliardi PL, Tobin DJ, Gaveriaux-Ruff C, Bigliardi-Qi M. Opioids and the skin–where do we stand? Exp Dermatol. 2009;18:424–30.

    Article  CAS  PubMed  Google Scholar 

  119. Charbaji N, Schafer-Korting M, Kuchler S. Morphine stimulates cell migration of oral epithelial cells by delta-opioid receptor activation. PLoS One. 2012;7, e42616.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Kuchler S, Radowski MR, Blaschke T, Dathe M, Plendl J, Haag R, Schafer-Korting M, Kramer KD. Nanoparticles for skin penetration enhancement–a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur J Pharm Biopharm. 2009;71:243–50.

    Article  PubMed  CAS  Google Scholar 

  121. Kuchler S, Wolf NB, Heilmann S, Weindl G, Helfmann J, Yahya MM, Stein C, Schafer-Korting M. 3D-wound healing model: influence of morphine and solid lipid nanoparticles. J Biotechnol. 2010;148:24–30.

    Article  PubMed  CAS  Google Scholar 

  122. Wintzen M, Gilchrest BA. Proopiomelanocortin, its derived peptides, and the skin. J Invest Dermatol. 1996;106:3–10.

    Article  CAS  PubMed  Google Scholar 

  123. Wintzen M, de Winter S, Out-Luiting JJ, van Duinen SG, Vermeer BJ. Presence of immunoreactive beta-endorphin in human skin. Exp Dermatol. 2001;10:305–11.

    Article  CAS  PubMed  Google Scholar 

  124. Stander S, Gunzer M, Metze D, Luger T, Steinhoff M. Localization of mu-opioid receptor 1A on sensory nerve fibers in human skin. Regul Pept. 2002;110:75–83.

    Article  CAS  PubMed  Google Scholar 

  125. Bigliardi-Qi M, Sumanovski LT, Buchner S, Rufli T, Bigliardi PL. Mu-opiate receptor and Beta-endorphin expression in nerve endings and keratinocytes in human skin. Dermatology. 2004;209:183–9.

    Article  CAS  PubMed  Google Scholar 

  126. Glinski W, Brodecka H, Glinska-Ferenz M, Kowalski D. Increased concentration of beta-endorphin in the sera of patients with severe atopic dermatitis. Acta Derm Venereol. 1995;75:9–11.

    CAS  PubMed  Google Scholar 

  127. Bigliardi-Qi M, Bigliardi PL, Eberle AN, Buchner S, Rufli T. beta-endorphin stimulates cytokeratin 16 expression and downregulates mu-opiate receptor expression in human epidermis. J Invest Dermatol. 2000;114:527–32.

    Article  CAS  PubMed  Google Scholar 

  128. Bigliardi PL, Buchner S, Rufli T, Bigliardi-Qi M. Specific stimulation of migration of human keratinocytes by mu-opiate receptor agonists. J Recept Signal Transduct Res. 2002;22:191–9.

    Article  CAS  PubMed  Google Scholar 

  129. Noda M, Teranishi Y, Takahashi H, Toyosato M, Notake M, Nakanishi S, Numa S. Isolation and structural organization of the human preproenkephalin gene. Nature. 1982;297:431–4.

    Article  CAS  PubMed  Google Scholar 

  130. Slominski AT, Zmijewski MA, Zbytek B, Brozyna AA, Granese J, Pisarchik A, Szczesniewski A, Tobin DJ. Regulated proenkephalin expression in human skin and cultured skin cells. J Invest Dermatol. 2011;131:613–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Quock RM, Burkey TH, Varga E, Hosohata Y, Hosohata K, Cowell SM, Slate CA, Ehlert FJ, Roeske WR, Yamamura HI. The delta-opioid receptor: molecular pharmacology, signal transduction, and the determination of drug efficacy. Pharmacol Rev. 1999;51:503–32.

    CAS  PubMed  Google Scholar 

  132. Bigliardi-Qi M, Gaveriaux-Ruff C, Zhou H, Hell C, Bady P, Rufli T, Kieffer B, Bigliardi P. Deletion of delta-opioid receptor in mice alters skin differentiation and delays wound healing. Differentiation. 2006;74:174–85.

    Article  CAS  PubMed  Google Scholar 

  133. Day R, Lazure C, Basak A, Boudreault A, Limperis P, Dong W, Lindberg I. Prodynorphin processing by proprotein convertase 2. Cleavage at single basic residues and enhanced processing in the presence of carboxypeptidase activity. J Biol Chem. 1998;273:829–36.

    Article  CAS  PubMed  Google Scholar 

  134. Shippenberg TS. The dynorphin/kappa opioid receptor system: a new target for the treatment of addiction and affective disorders? Neuropsychopharmacology. 2009;34:247.

    Article  CAS  PubMed  Google Scholar 

  135. Cahill CM, Taylor AM, Cook C, Ong E, Moron JA, Evans CJ. Does the kappa opioid receptor system contribute to pain aversion? Front Pharmacol. 2014;5:253.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  136. Lalanne L, Ayranci G, Kieffer BL, Lutz PE. The kappa opioid receptor: from addiction to depression, and back. Front Psychiatr. 2014;5:170.

    Article  Google Scholar 

  137. Bigliardi-Qi M, Gaveriaux-Ruff C, Pfaltz K, Bady P, Baumann T, Rufli T, Kieffer BL, Bigliardi PL. Deletion of mu- and kappa-opioid receptors in mice changes epidermal hypertrophy, density of peripheral nerve endings, and itch behavior. J Invest Dermatol. 2007;127:1479–88.

    Article  CAS  PubMed  Google Scholar 

  138. Bos JD, De Rie MA. The pathogenesis of psoriasis: immunological facts and speculations. Immunol Today. 1999;20:40–6.

    Article  CAS  PubMed  Google Scholar 

  139. Steinhoff M, Stander S, Seeliger S, Ansel JC, Schmelz M, Luger T. Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol. 2003;139:1479–88.

    Article  PubMed  Google Scholar 

  140. Laverdet B, Danigo A, Girard D, Magy L, Demiot C, Desmouliere A. Skin innervation: important roles during normal and pathological cutaneous repair. Histol Histopathol. 2015;30(7):875–82.

    Google Scholar 

  141. Brain SD. Sensory neuropeptides: their role in inflammation and wound healing. Immunopharmacology. 1997;37:133–52.

    Article  CAS  PubMed  Google Scholar 

  142. Amadesi S, Reni C, Katare R, Meloni M, Oikawa A, Beltrami AP, Avolio E, Cesselli D, Fortunato O, Spinetti G, Ascione R, Cangiano E, Valgimigli M, Hunt SP, Emanueli C, Madeddu P. Role for substance p-based nociceptive signaling in progenitor cell activation and angiogenesis during ischemia in mice and in human subjects. Circulation. 2012;125:1774–86. S1-19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Ann W. Kinyua (Yonsei University) for the critical reading of this manuscript. This work supported by Small and Medium Business Administration (Technological Innovation R&D Program S2178403) for S. H. M. and the National Research Foundation (NRF-2013R1A1A1007693 and 2014K1A3A1A19066980) for K.W.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Woo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Choi, YH., Moh, S., Kim, K.W. (2015). The Role of Neuropeptides in Skin Wound Healing. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_142-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_142-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics