Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 404))

Abstract

The function of the dialysis system is to eliminate toxic wastes products, to restore “internal milieu composition” and to correct extracellular fluid overload. When complete renal failure occurs, the use of an artificial kidney is required. An artificial kidney is a machine that provides a means for removing uremic toxins from the blood and adding deficient components to it (e.g., bicarbonate, calcium). This is done using the principle of dialysis. There are two types of dialysis treatment: peritoneal dialysis (PD) and hemodialysis (HD). The peritoneal dialysis (PD) uses the abdominal cavity and its largely perfused serous membrane as a “built-in dialyzer” by creating and renewing periodically an artificial ascites. PD is a simple and safe technique that does not imply an extracorporeal blood circuit and usually performed at home. The hemodialysis and its related techniques are a much more complex and risky procedure that requires an extracorporeal blood circuit. HD is usually performed in hemodialysis facilities (center, self-care) but may be alternatively performed at home after training.

Hemodialysis machines deliver a patient’s dialysis prescription by controlling blood and dialysate flows through the dialyzer. In addition, they incorporate monitoring and alarm systems that protect the patient against adverse events that may arise from equipment malfunction during the dialysis treatment. This chapter will focus on essential principles of hemodialysis, the major components of HD machines and their respective monitoring devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmad, S.: Manual of Clinical Dialysis, 2nd edn. Springer, Heidelberg (2009)

    Book  Google Scholar 

  2. Alter, M.J., Favero, M.S., Moyer, L.A., Bland, L.A.: National surveillance of dialysis-associated diseases in the United States. Trans. ASAIO 37, 97–109 (1991) (1989)

    Google Scholar 

  3. Andrulli, S., Colzani, S., Mascia, F., et al.: The role of blood volume re-duction in the genesis of intradialytic hypotension. Am. J. Kidney Dis. 40(6), 1244–1254 (2002)

    Article  Google Scholar 

  4. Azar, A.T.: Effect of dialysate temperature on hemodynamic stability among hemodialysis patients. Saudi J. Kidney Dis. Transpl. 20(4), 596–603 (2009)

    MathSciNet  Google Scholar 

  5. Ayoub, A., Finlayson, M.: Effect of cool temperature dialysate on the quality and patients’ perception of haemodialysis. Nephrol. Dial. Transplant. 19(1), 190–194 (2004)

    Article  Google Scholar 

  6. Argiles, A., Kerr, P.G., Canaud, B., et al.: Calcium kinetics and the long-term effects of lowering dialysate calcium concentration. Kidney Int. 43(3), 630–640 (1993)

    Article  Google Scholar 

  7. Berkes, S.L., Kahn, S.I., Chazan, J.A., Garella, S.: Prolonged hemolysis from overheated dialysate. Ann. Intern. Med. 83(3), 363–364 (1975)

    Google Scholar 

  8. Byrne, J.H., Schultz, S.G.: An introduction to membrane transport and bioelectricity: foundation of general physiology and electrochemical signalling, 2nd edn. Raven Press, New York (1994)

    Google Scholar 

  9. Calò, L.A., Naso, A., D’Angelo, A., et al.: Molecular biology-based as-sessment of vitamin E-coated dialyzer effects onoxidative stress, inflammation, and vascular remodeling. Artif. Organs 35(2), E33–E39 (2011)

    Google Scholar 

  10. Canaud, B.: Adequacy target in hemodialysis. J. Nephrol. 17(8), S77–S86 (2004)

    Google Scholar 

  11. Canaud, B., Bosc, J.Y., Leray, H., Morena, M., Stec, F.: Microbiologic purity of dialysate: rationale and technical aspects. Blood Purif. 18(3), 200–213 (2000)

    Article  Google Scholar 

  12. Clark, W.R., Macias, W.L., Molitoris, B.A., et al.: Membrane adsorption of β-2-microglobulin: equilibrium and kinetic characterization. Kidney Int. 46(4), 1140–1146 (1994)

    Article  Google Scholar 

  13. Clark, W.R., Hamburger, R.J., Lysaght, M.J.: Effect Of Membrane Com-position And Structure On Solute Removal And Biocompatibility In Hemodialysis. Kidney Int. 56(6), 2005–2015 (1999)

    Article  Google Scholar 

  14. Curtis, J., Delaney, K., O’Kane, P., et al.: Hemodialysis Devices. In: Core Curriculum for the Dialysis Technician: A Comprehensive Review of Hemodialysis, 4th edn., pp. 88–112. Medical Education Institute, Inc., Madison (2008)

    Google Scholar 

  15. Davenport, A.: What are the anticoagulation options for intermittent hemodialysis? Nat. Rev. Nephrol. (2011), doi:10.1038/nrneph.2011.88; [Epub ahead of print]

    Google Scholar 

  16. Daugirdas, J.T.: Pathophysiology of dialysis hypotension: An update. Am. J. Kidney Dis. 38(suppl. 4), S11–S17 (2001)

    Article  Google Scholar 

  17. Daugirdas, J.T., Blake, P.G., Ing, T.S. (eds.): Handbook of Dialysis, 4th edn. Lippincott, Williams and Wilkins, Philadelphia (2007)

    Google Scholar 

  18. Deppisch, R., Gohl, H., Smeby, L.: Microdomain structure of polymeric surfaces—potential for improving blood treatment procedures. Nephrol. Dial. Transplant. 13(6), 1354–1359 (1998)

    Article  Google Scholar 

  19. Donauer, J., Kolblin, D., Bek, M., et al.: Ultrafiltration profiling and measurement of relative blood volume as strategies to reduce hemodialysis-related side effects. Am. J. Kidney Dis. 36(1), 115–123 (2000)

    Article  Google Scholar 

  20. Evenepoel, P., Dejagere, T., Verhamme, P., et al.: Heparin-coated poly-acrylonitrile membrane versus regional citrate anticoagulation: a prospective randomizedstudy of 2 anticoagulation strategies in patients at risk of bleeding. Am. J. Kidney Dis. 49(5), 642–649 (2007)

    Article  Google Scholar 

  21. Flanigan, M.J.: Role of sodium in hemodialysis. Kidney Int. 76, S72-S78 (2000)

    Article  Google Scholar 

  22. Fortner, R.W., Nowakowski, A., Carter, C.B., et al.: Death due to over-heated dialysate during dialysis. Ann. Intern. Med. 73(3), 443–444 (1970)

    Google Scholar 

  23. Fresenius Medical Care, Deutschland G.m.b.H., Bad Homburg, Germany, http://www.fmc-ag.com/

  24. Gabutti, L., Ferrari, N., Giudici, G., et al.: Unexpected haemodynamic instability associated with standard bicarbonate haemodialysis. Nephrol. Dial. Transplant. 18(11), 2369–2376 (2003)

    Article  Google Scholar 

  25. Gastaldello, K., Melot, C., Kahn, R.J., et al.: Comparison of cellulose di-acetate and polysulfone membranes in the outcome of acute renal failure. A prospective randomized study. Nephrol. Dial. Transplant. 15(2), 224–230 (2000)

    Article  Google Scholar 

  26. Graham, K.A., Reaich, D., Channon, S.M., et al.: Correction of acidosis in hemodialysis decreases whole-body protein degradation. J. Am. Soc. Nephrol. 8(4), 632–637 (1997)

    Google Scholar 

  27. Gutch, C.F., Stoner, M.H., Corea, A.L.: Review of hemodialysis for nurses and dialysis personnel, 6th edn. Mosby, St. Louis (1999)

    Google Scholar 

  28. Hilderson, J., Ringoir, S., van Waeleghem, J.P., et al.: Short dialysis with a polyacrylonitrilmembrane (RP 6) without the use of a closed re-circulating dialyzate delivery system. Clin. Nephrol. 4(1), 18–22 (1975)

    Google Scholar 

  29. Henrich, W.L.: Principles and Practice of Dialysis, 4th edn. Lippin-cott Williams & Wilkins, USA (2009)

    Google Scholar 

  30. Koda, Y., Mineshima, M.: Advances and advantages in recent central dialysis fluid delivery system. Blood Purif. 27(suppl. 1), 23–27 (2009)

    Article  Google Scholar 

  31. Kopp, K.F., Gutch, C.F., Kolff, W.J.: Single needle dialysis. Trans. Am./ Soc. Artif. Intern. Organs 18, 75–81 (1972)

    Article  Google Scholar 

  32. Korwer, U., Schorn, E.B., Grassmann, A., Vienken, J.: Understanding Membranes and Dialyzers. PABST Science Publishers, Lengerich (2004)

    Google Scholar 

  33. Kuhlmann, U., Goldau, R., Samadi, N., et al.: Accuracy and safety of online clearance monitoring based on conductivity variation. Nephrol. Dial. Transplant. 16(5), 1053–1058 (2001)

    Article  Google Scholar 

  34. Kyriazis, J., Glotsos, J., Bilirakis, L., et al.: Dialysate calcium profiling during hemodialysis: use and clinical implications. Kidney Int. 61(1), 276–287 (2002)

    Article  Google Scholar 

  35. Lang, S., Küchle, C., Fricke, H., Schiffl, H.: Biocompatible intermittent hemodialysis. New Horiz. 3(4), 680–687 (1995)

    Google Scholar 

  36. Lavaud, S., Canivet, E., Wuillai, A., et al.: Optimal anticoagulation strategy in haemodialysis with heparin-coated polyacrylonitrile membrane. Nephrol. Dial. Transplant. 18(10), 2097–2104 (2003)

    Article  Google Scholar 

  37. Lee, F.F., Dorning, C.J., Leonard, E.F.: Urethanes as ethylene oxide res-ervoirs in hollow-fiber Dialyzers. Trans. Am. Soc. Artif. Intern. Organs 31, 526–533 (1985)

    Google Scholar 

  38. Leunissen, K.M., Kooman, J.P., van der Sande, F.M., van Kuijk, W.H.: Hypotension and ultrafiltration physiology in dialysis. Blood Purif. 18(4), 251–254 (2000)

    Article  Google Scholar 

  39. Levin, A., Goldstein, M.B.: The benefits and side effects of ramped hypertonic sodium dialysis. J. Am. Soc. Nephrol. 7(2), 242–246 (1996)

    Google Scholar 

  40. Lonnemann, G.: The quality of dialysate: an integrated approach. Kidney Int. Suppl. 76, S112–S119 (2000)

    Google Scholar 

  41. Lysaght, M.J.: Evolution of hemodialysis membranes. Contrib. Nephrol. 113, 1–10 (1995)

    Google Scholar 

  42. Maduell, F., Vera, M., Arias, M., et al.: Influence of the ionic dialysance monitor on Kt measurement in hemodialysis. Am. J. Kidney Dis. 52(1), 85–92 (2008)

    Article  Google Scholar 

  43. Mancini, E., Mambelli, E., Irpinia, M., et al.: Prevention of dialysis hypotension episodes using fuzzy logic control system. Nephrol. Dial. Transplant. 22(5), 1420–1427 (2007)

    Article  Google Scholar 

  44. Mancini, E., Santoro, A., Spongano, M., et al.: Effects of automatic blood volume control over intradialytic hemodynamic stability. Int. J. Artif. Organs 18(9), 495–498 (1995)

    Google Scholar 

  45. Masakane, I.: Review: Clinical usefulness of ultrapure dialysate - recent evidence and perspectives. Ther. Apher. Dial. 10(4), 348–354 (2006)

    Article  Google Scholar 

  46. Meira, F.S., Poli de Figueiredo, C.E., Figueiredo, A.E.: Influence of so-dium profile in preventing complications during hemodialysis. Hemodial. Int. 11(suppl. 3), S29–S32 (2007)

    Article  Google Scholar 

  47. Mercadal, L., Petitclerc, T., Jaudon, M.C., et al.: Is ionic dialysance a valid parameter for quantification of dialysis efficiency? Artif. Organs 22(12), 1005–1009 (1998)

    Article  Google Scholar 

  48. Mercadal, L., Du Montcel, S.T., Jaudon, M.C., et al.: Ionic dialysance vs urea clearance in the absence of cardiopulmonary recirculation. Nephrol. Dial. Transplant. 17(1), 106–111 (2002)

    Article  Google Scholar 

  49. Misra, M.: The basics of hemodialysis equipment. Hemodial. Int. 9(1), 30–36 (2005)

    Article  Google Scholar 

  50. Mitchell, S.: Estimated dry weight (EDW): aiming for accuracy. Nephrol. Nurs. J. 29(5), 421–428 (2002)

    Google Scholar 

  51. Monge, M., Shahapuni, I., Oprisiu, R., et al.: Reappraisal of 2003 NKF-K/DOQI guidelines for management of hyperparathyroidism in chronic kidney disease patients. Nat. Clin. Pract. Nephrol. 2(6), 326–336 (2006)

    Article  Google Scholar 

  52. Moret, K., Beerenhout, C.H., van den Wall Bake, A.W., et al.: Ionic dialysance and the assessment of Kt/V: the influence of different estimates of V on method agreement. Nephrol. Dial. Transplant. 22(8), 2276–2282 (2007)

    Article  Google Scholar 

  53. Moret, K., Aalten, J., van den Wall Bake, W., et al.: The effect of sodium profiling and feedback technologies on plasma conductivity and ionic mass balance: a study in hypotension-prone dialysis patients. Nephrol. Dial. Transplant. 21(1), 138–144 (2006)

    Article  Google Scholar 

  54. Morti, S.M., Zydney, A.: Protein-membrane interactions during hemo-dialysis. Effects on solute. transport. ASAIO J. 44(4), 319–326 (1998)

    Google Scholar 

  55. NKF-K/DOQI, Clinical practice guidelines for Bone Metabolism and Disease in Chronic Kidney Disease. Am. J. Kidney Dis. 42(4 suppl. 3), S1–S201 (2003)

    Google Scholar 

  56. Nishimura, M., Nakanishi, T., Yasui, A., et al.: Serum calcium increases the incidence of arrhythmias during acetate hemodialysis. Am. J. Kidney Dis. 19(2), 149–155 (1992)

    Google Scholar 

  57. Oliver, M.J., Edwards, L.J., Churchill, D.N.: Impact of sodium and ul-trafiltration profiling on hemodialysis-related symptoms. J. Am. Soc. Nephrol. 12(1), 151–156 (2001)

    Google Scholar 

  58. Ouseph, R., Hutchison, C.A., Ward, R.A.: Differences in solute removal by two high-flux membranes of nominally similar synthetic polymers. Nephrol. Dial. Transplant. 23(5), 1704–1712 (2008)

    Article  Google Scholar 

  59. Palmer, B.F.: Dialysate Composition in Hemodialysis and Peritoneal Dialysis. In: Schrier, R.W. (ed.) Atlas of Diseases of the Kidney, ch. 2, vol. 5. Current Medicine, Inc., Philadelphia (1999)

    Google Scholar 

  60. Papadimitriou, M., Kulatilake, A.E.: Relationship between weight loss and venous and dialysate pressures during chronic intermittent haemodialysis. Med. Biol. Eng. 7(3), 317–320 (1969)

    Article  Google Scholar 

  61. Petitclerc, T., Goux, N., Hamani1, A., Béné, B., Jacobs, C.: Biofeed-back technique through the variations of the dialysate sodium concentration. Nefrologia XVII(1), 50–55 (1997)

    Google Scholar 

  62. Petitclerc, T.: Do dialysate conductivity measurements provide conductivity clearance or ionic dialysance? Kidney Int. 70(10), 1682–1686 (2005)

    Article  Google Scholar 

  63. Pierratos, A., Ouwendyk, M., Francoeur, R., et al.: Nocturnal hemodialysis: three-year experience. J. Am. Soc. Nephrol. 9(5), 859–868 (1998)

    Google Scholar 

  64. Pittard, J.D.: Safety monitors in hemodialysis. In: Nissenson, A.R., Fine, R.N. (eds.) Handbook of Dialysis Therapy, 4th edn., Philadelphia, PA, USA, pp. 188–223 (2008)

    Google Scholar 

  65. Polaschegg, H.: Single-needle dialysis. In: Nissenson, A.R., Fine, R.N. (eds.) Handbook of Dialysis Therapy, 4th edn., Philadelphia, PA, USA, pp. 168–187 (2008)

    Google Scholar 

  66. Pontoriero, G., Pozzoni, P., Andrulli, S., Locatelli, F.: The quality of dialysis water. Nephrol. Dial. Transplant. 18(suppl. 7), vii21–vii25 (2003)

    Google Scholar 

  67. Pozzoni, P., Di Filippo, S., Pontoriero, G., Locatelli, F.: Effectiveness of sodium and conductivity kinetic models in predicting end-dialysis plasma water sodium concentration: preliminary results of a single center experience. Hemodial. Int. 11(2), 169–177 (2007)

    Article  Google Scholar 

  68. Reddy, B., Cheung, A.K.H.: Hemodialysis. In: Lai, K.N. (ed.) A Practical Manual of Renal Medicine, 1st edn. World Scientific, Singapore (2009)

    Google Scholar 

  69. Ridel, C., Osman, D., Mercadal, L., et al.: Ionic dialysance: a new valid parameter for quantification of dialysis efficiency in acute renal failure? Intensive Care Med. 33(3), 460–465 (2007)

    Article  Google Scholar 

  70. Ronco, C., Crepaldi, C., Brendolan, A., et al.: Evolution of synthetic membranes for blood purification: the case of the Polyflux family. Nephrol. Dial. Transplant. 18(suppl. 7), vii10–vii20 (2003)

    Google Scholar 

  71. Ronco, C., Brendolan, A., Crepaldi, C., et al.: Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning technique. J. Am. Soc. Nephrol. 13(1), S53–S61 (2002)

    Google Scholar 

  72. Ronco, C., Brendolan, A., Milan, M., et al.: Impact of biofeedback-induced cardiovascular stability on hemodialysis tolerance and efficiency. Kidney Int. 58(2), 800–808 (2000)

    Article  Google Scholar 

  73. Rosa Diez, G.J., Bevione, P., Crucelegui, M.S., et al.: Measuring Kt by ionic dialysance is a useful tool for assessing dialysis dose in critical patients. Nefrologia 30(2), 227–231 (2010)

    Google Scholar 

  74. Sankaranarayanan, N., Santos, S.F., Peixoto, A.J.: Blood pressure meas-urement in dialysis patients. Adv. Chronic. Kidney Dis. 11(2), 134–142 (2004)

    Article  Google Scholar 

  75. Santoro, A., Mambelli, E., Canova, C., et al.: Biofeedback in dialysis. J. Nephrol. 16(suppl. 7), S48–S56 (2003)

    Google Scholar 

  76. Santoro, A., Mancini, E., Paolini, F., et al.: Blood volume regulation during hemodialysis. Am. J. Kidney Dis. 32(5), 739–748 (1998)

    Article  Google Scholar 

  77. Sargent, J., Gotch, F.: Principles and biophysics of dialysis. In: Jacobs, C., Kjellstrand, C., Koch, K., Winchester, J. (eds.) Replacement of Renal Function by Dialysis, 4th edn., pp. 34–102. Kluwer Academic Publishers, Dortdrecht (1996)

    Chapter  Google Scholar 

  78. Salai, P.B.: Hemodialysis. In: Molzahn, A.E., Butera, E. (eds.) Contemporary Nephrology Nursing: Principles and Practice, pp. 527–574. American Nephrology Nurses’ Association, Pitman (2007)

    Google Scholar 

  79. Sam, R., Vaseemuddin, M., Leong, W.H., et al.: Composition and clini-cal use of hemodialysates. Hemodial. Int. 10(1), 15–28 (2006)

    Article  Google Scholar 

  80. Schmidt, R., Roeher, O., Hickstein, H., Korth, S.: Prevention of haemo-dialysis-induced hypotension by biofeedback control of ultrafiltra-tion and infusion. Nephrol. Dial. Transplant. 16(3), 595–603 (2001a)

    Article  Google Scholar 

  81. Schmidt, R., Roeher, O., Hickstein, H., Korth, S.: Blood Pressure Guided Profiling of Ultrafiltration during Hemodialysis. Saudi J. Kidney Dis. Transpl. 12(3), 337–344 (2001b)

    Google Scholar 

  82. Schneditz, D., Ronco, C., Levin, N.: Temperature control by the blood temperature monitor. Semin. Dial. 16(6), 477–482 (2003)

    Article  Google Scholar 

  83. Schreiber Jr., M.J.: Clinical, dilemmas in dialysis: Managing the hypotensive patient. Setting the stage. Am. J. Kidney Dis. 38(suppl. 4), S1–S10 (2001)

    Article  Google Scholar 

  84. Schiffl, H., Lang, S.M., Haider, M.: Bioincompatibility of dialyzer membranes may have a negative impact on outcome of acute renal failure, independent of the dose of dialysis delivered: a retrospective multicenter analysis. ASAIO J. 44(5), M418–M422 (1998)

    Google Scholar 

  85. Song, J.H., Park, G.H., Lee, S.Y., et al.: Effect of sodium balance and the combination of ultrafiltration profile during sodium profiling hemodialysis on the maintenance of the quality of dialysis and sodium and fluid balances. J. Am. Soc. Nephrol. 16(1), 237–246 (2005)

    Article  Google Scholar 

  86. Speigel, D.M.: The role of magnesium binders in chronic kidney dis-ease. Semin. Dial. 20(4), 333–336 (2007)

    Article  Google Scholar 

  87. Stiller, S., Bonnie-Schorn, E., Grassmann, A., et al.: A critical review of sodium profiling for hemodialysis. Semin. Dial. 14(5), 337–347 (2001)

    Article  Google Scholar 

  88. Strathmann, H., Gohl, H.: Membranes for blood purification: state of the art and new developments. Contrib. Nephrol. 78, 119–141 (1990)

    Google Scholar 

  89. Takemoto, Y., Naganuma, T., Yoshimura, R.: Biocompatibility of the dialysis membrane. Contrib. Nephrol. 168, 139–145 (2011)

    Article  Google Scholar 

  90. Trakarnvanich, T., Chirananthavat, T., Ariyakulnimit, S., et al.: The efficacy of single-needle versus double-needle hemodialysis in chronic renal failure. J. Med. Assoc. Thai. 89(suppl. 2), S196–S206 (2006)

    Google Scholar 

  91. Twiss, E.E.: One-cannula haemodialysis. Lancet 284(7369), 1106 (1964)

    Article  Google Scholar 

  92. Yu, A., Ing, T., Zabineh, R., Daugirdas, J.: Effect of dialysate on central hemodynamic and urea kinetics. Kidney Int. 48(1), 237–243 (1995)

    Article  Google Scholar 

  93. Van der Sande, F.M., Cheriex, E.C., van Kuijk, W.H., Leunissen, K.M.: Effect of dialysate calcium concentrations on intradialytic blood pressure course in cardiac-compromised patients. Am. J. Kidney Dis. 32(1), 125–131 (1998)

    Article  Google Scholar 

  94. Vanholder, R., De Smet, R., Glorieux, G., et al.: Review on uremic tox-ins: classification, concentration, and interindividual variability. Kidney Int. 63(5), 1934–1943 (2003)

    Article  Google Scholar 

  95. Vanholder, R., Hoenich, N., Ringoir, S.: Single needle hemodialysis. In: Maher, J.F. (ed.) Replacement of Renal Function by Dialysis, 3rd edn., pp. 382–399. Kluwer Academic Publisher, Boston (1989)

    Chapter  Google Scholar 

  96. Van Stone, J.C.: Individualization of the dialysate prescription in chronic hemodialysis. Dial. Transplant. 23(11), 624–635 (1994)

    Google Scholar 

  97. Ward, R.A., Leypoldt, J.K., Clark, W.R., et al.: What clinically important advances in understanding and improving dialyzer function have occurred recently? Semin. Dial. 14(3), 160–174 (2001)

    Article  Google Scholar 

  98. Wolkotte, C., Hassell, D.R., Moret, K., et al.: Blood volume control by biofeedback and dialysis-induced symptomatology. A short term clinical study. Nephron. 92(3), 605–609 (2002)

    Google Scholar 

  99. Zhou, Y.L., Liu, H.L., Duan, X.F., et al.: Impact of sodium and ultrafiltration profiling on haemodialysis related hypotension. Nephrol. Dial. Transplant. 21(11), 3231–3237 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Azar, A.T., Canaud, B. (2013). Hemodialysis System. In: Azar, A. (eds) Modelling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27458-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27458-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27457-2

  • Online ISBN: 978-3-642-27458-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics