Skip to main content

Advertisement

Log in

Ionic dialysance: a new valid parameter for quantification of dialysis efficiency in acute renal failure?

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

Several studies have reported a close relationship between an increased dose of dialysis and survival in patients treated for acute renal failure. Unfortunately, the quantification of dialysis in critically ill patients based on the urea nitrogen formula Kt/V is not applicable. Ionic dialysance is a new parameter calculated in real time from the dialysate conductivity and correlated with the effective urea clearance in chronic hemodialysis patients. The aim of our study was to evaluate ionic dialysance in the quantification of dialysis in critically ill patients with acute renal failure.

Design

Prospective open-label study.

Setting

An 18-bed medical intensive care unit.

Patients

Thirty-one patients with multiple organ dysfunction syndrome and acute renal failure requiring intermittenthemodialysis were included.

Measurements

Using the first dialysis session of each patient, we compared the delivered dose of dialysis based on ionic dialysance measurement (KtID) with the well-accepted gold standard method based on fractional dialysate sampling (Ktdialysate). The data were analyzed using linear regression and Bland–Altman analysis.

Results

Thirty-one intermittent hemodialysis sessions were performed in 31 critically ill patients (mean age 58 ± 12 years, SAPS II score 56 ± 10). We found a close correlation between Ktdialysate and KtID (Ktdialysate = 36.3 ± 11.4 l; KtID = 38.4 ± 11.8; r = 0.96) with excellent limits of agreement (–2.2 l; 6.4 l).

Conclusion

The feasibility of dialysis quantification based on ionic dialysance in the critically ill patient is good. This method is a simple and accurate tool for the determination of dialysis dose in critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guerin C, Girard R, Selli JM, Perdrix JP, Ayzac L (2000) Initial versus delayed acute renal failure in the intensive care unit. A multicenter prospective epidemiological study. Rhone-Alpes Area Study Group on Acute Renal Failure. Am J Respir Crit Care Med 161:872–879

    PubMed  CAS  Google Scholar 

  2. Metnitz PG, Krenn CG, Stelzer H, Lang T, Ploder J, Lenz K, et al (2002) Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med 30:2051–2058

    Article  PubMed  Google Scholar 

  3. De Mendonça A, Vincent JL, Suter PM, Moreno R, Dearden NM, Antonelli M, Takala J, Sprung C, Cantraine F (2000) Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med 26:915–921

    Article  PubMed  Google Scholar 

  4. Guérin C, Girard R, Selli JM, Ayzac L (2002) Intermittent versus continuous renal replacement therapy for acute renal failure in intensive care units: results from a multicenter prospective epidemiological survey. Intensive Care Med 28:1411–1418

    Article  PubMed  Google Scholar 

  5. Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, La Greca G (2000) Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 356:26–30

    Article  PubMed  CAS  Google Scholar 

  6. Schiffl H, Lang SM, Fischer R (2002) Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346:305–310

    Article  PubMed  Google Scholar 

  7. Clark WR, Mueller BA, Kraus MA, Macias WL (1998) Renal replacement therapy quantification in acute renal failure. Nephrol Dial Transplant 13(Suppl 6):86–90

    Article  PubMed  Google Scholar 

  8. Gotch FA, Sargent JA, Keen ML (2000) Whither goest Kt/V? Kidney Int Suppl 76:S3–18

    Article  PubMed  CAS  Google Scholar 

  9. Evanson JA, Ikizler TA, Wingard R, Knights S, Shyr Y, Schulman G, Himmelfarb J, Hakim RM (1999) Measurement of the delivery of dialysis in acute renal failure. Kidney Int 55:1501–1508

    Article  PubMed  CAS  Google Scholar 

  10. Marshall MR, Golper TA, Shaver MJ, Alam MG, Chatoth DK (2002) Urea kinetics during sustained low-efficiency dialysis in critically ill patients requiring renal replacement therapy. Am J Kidney Dis 39:556–570

    PubMed  CAS  Google Scholar 

  11. Li Z, Lew NL, Lazarus JM, Lowrie EG (2000) Comparing the urea reduction ratio and the urea product as outcome-based measures of hemodialysis dose. Am J Kidney Dis 35:598–605

    PubMed  CAS  Google Scholar 

  12. Lowrie EG, Chertow GM, Lew NL, Lazarus JM, Owen WF (1999) The urea [clearance × dialysis time] product (Kt) as an outcome-based measure of hemodialysis dose. Kidney Int 56:729–737

    Article  PubMed  CAS  Google Scholar 

  13. Cheng YL, Shek CC, Wong FK, Choi KS, Chau KF, Ing TS, Li CS (1998) Determination of the solute removal index for urea by using a partial spent dialysate collection method. Am J Kidney Dis 31:986–990

    PubMed  CAS  Google Scholar 

  14. Lindsay RM, Bene B, Goux N, Heidenheim AP, Landgren C, Sternby J (2001) Relationship between effective ionic dialysance and in vivo urea clearance during hemodialysis. Am J Kidney Dis 38:565–574

    PubMed  CAS  Google Scholar 

  15. Mercadal L, Petitclerc T, Jaudon MC, Bene B, Goux N, Jacobs C (1998) Is ionic dialysance a valid parameter for quantification of dialysis efficiency? Artif Organs 22:1005–1009

    Article  PubMed  CAS  Google Scholar 

  16. Mercadal L, Du Montcel ST, Jaudon MC, Hamani A, Izzedine H, Deray G, Bene B, Petitclerc T (2002) Ionic dialysance vs. urea clearance in the absence of cardiopulmonary recirculation. Nephrol Dial Transplant 17:106–111

    Article  PubMed  Google Scholar 

  17. Le Gall JR, Klar J, Lemeshow S, Saulnier F, Alberti C, Artigas A, Teres D (1996) The Logistic Organ Dysfunction system. A new way to assess organ dysfunction in the intensive care unit. ICU Scoring Group. JAMA: 276:802–810

    Article  Google Scholar 

  18. Schortgen F, Soubrier N, Delclaux C, Thuong M, Girou E, Brun-Buisson C, Lemaire F, Brochard L (2000) Hemodynamic tolerance of intermittent hemodialysis in critically ill patients: usefulness of practice guidelines. Am J Respir Crit Care Med 162:197–202

    PubMed  CAS  Google Scholar 

  19. National Kidney Foundation (1997) NKF-DOQI clinical practice guidelines for hemodialysis adequacy. Am J Kidney Dis 30:S15–66

    Google Scholar 

  20. Mactier RA, Madi AM, Allam BF (1997) Comparison of high-efficiency and standard haemodialysis providing equal urea clearances by partial and total dialysate quantification. Nephrol Dial Transplant 12:1182–1186

    Article  PubMed  CAS  Google Scholar 

  21. Mercadal L, Ridel C, Petitclerc T (2005) Ionic dialysance: principle and review of its clinical relevance for quantification of hemodialysis efficiency. Hemodial Int 9:111–119

    Article  PubMed  Google Scholar 

  22. Bland JM, Altman DJ (1986) Regression analysis. Lancet 1:908–909

    Article  PubMed  CAS  Google Scholar 

  23. Kuhlmann U, Goldau R, Samadi N, Graf T, Gross M, Orlandani G, Lange H (2001) Accurancy and safety of online clearance monitoring based on conductivity variation. Nephrol Dial Transplant 16:1053–1058

    Article  PubMed  CAS  Google Scholar 

  24. Ikizler TA, Sezer MT, Flakoll PJ, Hariachar S, Kanagasundaram NS, Gritter N, Knights S, Shyr Y, Paganini E, Hakim RM, Himmelfarb J. PICARD Study Group (2004) Urea space and total body water measurements by stable isotopes in patients with acute renal failure. Kidney Int 65:725–732

    Article  PubMed  Google Scholar 

  25. Himmerfarb J, Evanson J, Hakim RM, Freedman S, Shyr Y, Ikizler TA (2002) Urea volume of distribution exceeds total body water in patients with acute renal failure. Kidney Int 61:317–323

    Article  Google Scholar 

  26. Lowrie EG, Li Z, Ofsthun NJ, Lazarus JM (2006) Evaluating a new method to judge dialysis treatment using online measurements of ionic clearance. Kidney Int 70:211–217

    Article  PubMed  CAS  Google Scholar 

  27. Evanson JA, Himmelfarb J, Wingard R, Knights S, Shyr Y, Schulman G, Ikizler TA, Hakim RM (1998) Prescribed versus delivered dialysis in acute renal failure patients. Am J Kidney Dis 32:731–738

    PubMed  CAS  Google Scholar 

  28. Vanholder R, De Smet R, Griet G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De Heyn PP, Deppisch R, Descamps-Latcha B, Henle T, Jorres A, Dieter Lemke H, Massy ZA, Passlick-Deetjen J, Rodrigez M, Stegmayr B, Stenvinkel P, Tetta C, Wanner C, Zidek W (2003) Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63:1934–1943

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Rondeau for his advice during the writing of the manuscript and are grateful to the nursing teams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Ridel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ridel, C., Osman, D., Mercadal, L. et al. Ionic dialysance: a new valid parameter for quantification of dialysis efficiency in acute renal failure?. Intensive Care Med 33, 460–465 (2007). https://doi.org/10.1007/s00134-006-0514-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-006-0514-x

Keywords

Navigation