Skip to main content

Flavones and Flavonols: Phytochemistry and Biochemistry

  • Reference work entry
  • First Online:
Natural Products

Abstract

Flavonoids are natural products widely distributed in the plant kingdom and currently consumed in large amounts in the daily diet. These are categorized according to their molecular structures into flavonols, flavones, flavanones, catechins, anthocyanidins, dihydroflavonols, isoflavones and chalcones. Among them, flavones and flavonols define the largest subgroups. The diverse functions of flavones and flavonols in plants as well as their various roles in the interaction with other organisms offer many potential applications, not only in plant breeding but also in ecology, agriculture, and human nutrition and pharmacology. In this chapter, we focus mainly on the occurrence and biosynthesis of flavones and flavonols, their biological functions in plants and animals, and metabolic engineering strategies of flavone and flavonol pathway in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2OGD:

2-oxoglutarate-dependent dioxygenases

4CL:

4-coumarate: CoA ligase

ACC:

Acetyl-CoA carboxylase

C4H:

Cinnamate 4-hydroxylase

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

DHFs:

Dihydroflavonols

F3H:

Flavanone 3β-hydroxylase

FNS:

Flavone synthases

IAA:

Indole-3-acetic acid

NPA:

Naphthylphthalamic acid

OMT:

O-methyl transferase

PAL:

Phenylalanine ammonia-lyase

PAPS:

3′-phosphoadenosine 5′-phosphosulfate

ROS:

Reactive oxygen species

STs:

Sulfotransferases

References

  1. Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573

    Article  CAS  Google Scholar 

  2. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202

    Article  CAS  Google Scholar 

  3. Martens S, Mithöfer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399–2407

    Article  CAS  Google Scholar 

  4. Wollenweber E (1978) The distribution and chemical constituents of the farinose exudates in gymnogrammoid ferns. Am Fern J 68:13–28

    Article  Google Scholar 

  5. Wollenweber E, Dietz VH (1981) Occurrence and distribution of free flavonoid aglycones in plants. Phytochemistry 20:869–932

    Article  CAS  Google Scholar 

  6. Iwashina T, Kadota Y, Ueno T et al (1995) Foliar flavonoid composition in Japanese Cirsium species (Compositae), and their chemotaxonomic significance. J Jpn Bot 70:280–290

    Google Scholar 

  7. Markham KR, Porter LJ (1979) Flavonoids of the primitive liverwort Takakia and their taxonomic and phylogenetic significance. Phytochemistry 18:611–615

    Article  CAS  Google Scholar 

  8. Iwashina T, Ootani S (1990) Three flavonol allosides from Glaucidium palmatum. Phytochemistry 29:3639–3641

    Article  CAS  Google Scholar 

  9. Wollenweber E (1975) Flavonoidmuster im Knospenexkret der Betulaceen. Biochem Syst Ecol 3:47–52

    Article  CAS  Google Scholar 

  10. Shilin Y, Roberts MF, Phillipson JD (1989) Methoxylated flavones and coumarins from Artemisia annua. Phytochemistry 28:1509–1511

    Article  CAS  Google Scholar 

  11. Marchelli R, Vining LC (1973) The biosynthetic origin of chlorflavonin, a flavonoid antibiotic from Aspergillus candidus. Can J Biochem 51:1624–1629

    CAS  Google Scholar 

  12. Czihay G, Langer H, Ziegler H (1976) Flavonoid biosynthesis. Springer, New York

    Google Scholar 

  13. Bohm BA (1998) Introduction to flavonoids. Harwood Academic, Amsterdam

    Google Scholar 

  14. Mizutani M, Ward E, Dimaio J et al (1993) Molecular cloning and sequencing of a cDNA encoding mung bean cytochrome P450 (P450C4H) possessing cinnamate 4-hydroxylase activity. Biochem Biophys Res Commun 190:875–880

    Article  CAS  Google Scholar 

  15. Fatland BL, Ke J, Anderson MD et al (2002) Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol 130:740–756

    Article  Google Scholar 

  16. Jez JM, Noel JP (2002) Reaction mechanism of chalcone isomerase pH dependence, diffusion control, and product binding differences. J Biol Chem 277:1361–1369

    Article  CAS  Google Scholar 

  17. Turnbull JJ, Nakajima J, Welford RW et al (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3 β-hydroxylase. J Biol Chem 279:1206–1216

    Article  CAS  Google Scholar 

  18. Welford RW, Turnbull JJ, Claridge TD et al (2001) Evidence for oxidation at C-3 of the flavonoid C-ring during anthocyanin biosynthesis. Chem Commun (Camb) 18:1828–1829

    Article  CAS  Google Scholar 

  19. Akashi T, Fukuchi-Mizutani M, Aoki T et al (1999) Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase II, that catalyzes direct conversion of flavanones to flavones. Plant Cell Physiol 40:1182–1186

    Article  CAS  Google Scholar 

  20. Martens S, Forkmann G, Matern U et al (2001) Cloning of parsley flavone synthase I. Phytochemistry 58:43–46

    Article  CAS  Google Scholar 

  21. Martens S, Forkmann G, Britsch L et al (2003) Divergent evolution of flavonoid 2-oxoglutarate-dependent dioxygenases in parsley. FEBS Lett 544:93–98

    Article  CAS  Google Scholar 

  22. Britsch L (1990) Purification and characterization of flavone synthase I, a 2-oxoglutarate-dependent desaturase. Arch Biochem Biophys 282:152–160

    Article  CAS  Google Scholar 

  23. McMullen MD, Kross H, Snook ME et al (2004) Salmon silk genes contribute to the elucidation of the flavone pathway in maize (Zea mays L.). J Hered 95:225–233

    Article  CAS  Google Scholar 

  24. Jones P, Messner B, Nakajima J et al (2003) UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278:43910–43918

    Article  CAS  Google Scholar 

  25. Kramer CM, Prata RT, Willits MG et al (2003) Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry 64:1069–1076

    Article  CAS  Google Scholar 

  26. Mato M, Ozeki Y, Itoh Y et al (1998) Isolation and characterization of a cDNA clone of UDP-galactose: flavonoid 3-O-galactosyltransferase (UF3GaT) expressed in Vigna mungo seedlings. Plant Cell Physiol 39:1145–1155

    Article  CAS  Google Scholar 

  27. Miller KD, Guyon V, Evans JN et al (1999) Purification, cloning, and heterologous expression of a catalytically efficient flavonol-3-O-galactosyltransferase expressed in the male gametophyte of Petunia hybrida. J Biol Chem 274:34011–34019

    Article  CAS  Google Scholar 

  28. Gauthier A, Gulick PJ, Ibrahim RK (1998) Characterization of two cDNA clones which encode O-methyltransferases for the methylation of both flavonoid and phenylpropanoid compounds. Arch Biochem Biophys 351:243–249

    Article  CAS  Google Scholar 

  29. Zhang H, Wang J, Goodman HM (1997) An Arabidopsis gene encoding a putative 14-3-3-interacting protein, caffeic acid/5-hydroxyferulic acid O-methyltransferase. Biochim Biophys Acta 1353:199–202

    Article  CAS  Google Scholar 

  30. Cacace S, Schröder G, Wehinger E et al (2003) A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations. Phytochemistry 62:127–137

    Article  CAS  Google Scholar 

  31. Vogt T (2004) Regiospecificity and kinetic properties of a plant natural product O-methyltransferase are determined by its N-terminal domain. FEBS Lett 561:159–162

    Article  CAS  Google Scholar 

  32. Varin L, DeLuca V, Ibrahim RK et al (1992) Molecular characterization of two plant flavonol sulfotransferases. Proc Natl Acad Sci USA 89:1286–1290

    Article  CAS  Google Scholar 

  33. Ananvoranich S, Varin L, Gulick P et al (1994) Cloning and regulation of flavonol 3-sulfotransferase in cell-suspension cultures of Flaveria bidentis. Plant Physiol 106:485–491

    Article  CAS  Google Scholar 

  34. Varin L (1992) Flavonoid sulfation: phytochemistry, enzymology and molecular biology. Recent Adv Phytochem 26:233–254

    CAS  Google Scholar 

  35. Marsolais F, Varin L (1997) Mutational analysis of domain II of flavonol 3-sulfotransferase. Eur J Biochem 247:1056–1062

    Article  CAS  Google Scholar 

  36. Marsolais F, Laviolette M, Kakuta Y et al (1999) 3′-Phosphoadenosine 5′-phosphosulfate binding site of flavonol 3-sulfotransferase studied by affinity chromatography and P-31 NMR. Biochemistry 38:4066–4071

    Article  CAS  Google Scholar 

  37. Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12:556–563

    Article  CAS  Google Scholar 

  38. Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241:346–349

    Article  CAS  Google Scholar 

  39. Murphy AS, Peer WA, Taiz L (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211:315–324

    Article  CAS  Google Scholar 

  40. Peer WA, Bandyopadhyay A, Blakeslee JJ et al (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898–1911

    Article  CAS  Google Scholar 

  41. Sloley BD, Urichuk LJ, Morley P et al (2000) Identification of kaempferol as a monoamine oxidase inhibitor and potential neuroprotectant in extracts of Ginkgo biloba leaves. J Pharm Pharmacol 52:451–459

    Article  CAS  Google Scholar 

  42. Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  CAS  Google Scholar 

  43. Schopfer P, Liszkay A, Bechtold M et al (2002) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214:821–828

    Article  CAS  Google Scholar 

  44. Ljung K, Hull AK, Kowalczyk M et al (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 49:249–272

    Article  CAS  Google Scholar 

  45. Li J, Ou-Lee TM, Raba RL et al (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179

    CAS  Google Scholar 

  46. Wilson MI, Greenberg BM (1993) Protection of the D1 photosystem II reaction center protein from degradation in ultraviolet radiation following adaptation of Brassica napus L. to growth in ultraviolet radiation. Photochem Photobiol 57:556–563

    Article  CAS  Google Scholar 

  47. Ponce MA, Scervino JM, Erra-Balsells R et al (2004) Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 65:1925–1930

    Article  CAS  Google Scholar 

  48. Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiencyinduced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant Microbe Interact 15:334–340

    Article  CAS  Google Scholar 

  49. Xie ZP, Staehelin C, Vierheilig H et al (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525

    CAS  Google Scholar 

  50. Siqueira JO, Safir GR, Nair MG (1991) Stimulation of vesicular-arbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol 118:87–93

    Article  CAS  Google Scholar 

  51. Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488

    CAS  Google Scholar 

  52. Fisher RF, Long SR (1992) Rhizobium–plant signal exchange. Nature 357:655–660

    Article  CAS  Google Scholar 

  53. Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  CAS  Google Scholar 

  54. Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652

    Article  CAS  Google Scholar 

  55. Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629

    Article  CAS  Google Scholar 

  56. Zhang J, Subramanian S, Stacey G et al (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57:171–183

    Article  CAS  Google Scholar 

  57. Mathesius U, Bayliss C, Weinman JJ et al (1998) Flavonoids synthesized in cortical cells during nodule initiation are early developmental markers in white clover. Mol Plant Microbe Interact 11:1223–1232

    Article  CAS  Google Scholar 

  58. Morris AC, Djordjevic MA (2006) The Rhizobium leguminosarum biovar trifolii ANU794 induces novel developmental responses on the subterranean clover cultivar Woogenellup. Mol Plant Microbe Interact 19:471–479

    Article  CAS  Google Scholar 

  59. Imin N, Nizamidin M, Wu T et al (2007) Factors involved in root formation in Medicago truncatula. J Exp Bot 58:439–451

    Article  CAS  Google Scholar 

  60. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  Google Scholar 

  61. Feeny P, Sachdev K, Rosenberry L et al (1988) Luteolin 7-O-(6″-O-malonyl)-β-D- glucoside and trans-chlorogenic acid: oviposition stimulants for the black swallowtail butterfly. Phytochemistry 27:3439–3448

    Article  CAS  Google Scholar 

  62. Simmonds MS (2003) Flavonoid–insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30

    Article  CAS  Google Scholar 

  63. Mallikarjuna N, Kranthi KR, Jadhav DR et al (2004) Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. J Appl Entomol 128:321–328

    Article  CAS  Google Scholar 

  64. Basile A, Sorbo S, López-Sáez JA et al (2003) Effects of seven pure flavonoids from mosses on germination and growth of Tortula muralis HEDW. (Bryophyta) and Raphanus sativus L. (Magnoliophyta). Phytochemistry 62:1145–1151

    Article  CAS  Google Scholar 

  65. Beninger CW, Hall C (2005) Allelopathic activity of luteolin 7-O-β-glucuronide isolated from Chrysanthemum morifolum L. Biochem Syst Ecol 33:103–111

    Article  CAS  Google Scholar 

  66. Soriano IR, Asenstorfer RE, Schmidt O et al (2004) Inducible flavone in oats (Avena sativa) is a novel defense against plant–parasitic nematodes. Phytopathology 94:1207–1214

    Article  CAS  Google Scholar 

  67. Lahlou M (2004) Study of the molluscicidal activity of some phenolic compounds: structure–activity relationship. Pharm Biol 42:258–261

    Article  CAS  Google Scholar 

  68. Weidenborner M, Jha HC (1997) Antifungal spectrum of flavone and flavanone tested against 34 different fungi. Mycol Res 101:733–736

    Article  Google Scholar 

  69. Rio Del JA, Arcas MC, Benavente-Garcia O et al (1998) Citrus polymethoxylated flavones can confer resistance against Phytophthora citrophthora, Penicillium diditatum, and Geotrichum species. J Agr Food Chem 46:4423–4428

    Article  Google Scholar 

  70. Kong C, Liang W, Hu F et al (2004) Allelochemicals and their transformations in the Ageratum conyzoides intercropped citrus orchard soils. Plant Soil 264:149–157

    Article  CAS  Google Scholar 

  71. Xu HX, Lee SF (2001) Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res 15:39–43

    Article  Google Scholar 

  72. Picman AK, Schneider EF, Picman J (1995) Effect of flavonoids on mycelial growth of Verticillium albo-atrum. Biochem Syst Ecol 23:683–693

    Article  CAS  Google Scholar 

  73. Halliwell B (1994) Free radicals, antioxidants and human disease: curiosity, cause or constipation? Lancet 344:721–724

    Article  CAS  Google Scholar 

  74. Fraga CG, Mactino US, Ferraro GE et al (1987) Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence. Biochem Syst Ecol 36:717–720

    CAS  Google Scholar 

  75. Bors W, Heller W, Michel C et al (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343–355

    Article  CAS  Google Scholar 

  76. De Whallely CV, Rankin SM, Houct JR et al (1990) Flavonoids inhibit the oxidative modification of low density lipoprotein by macrophages. Biochem Pharmacol 39:1743–1750

    Article  Google Scholar 

  77. Gryglewski RJ, Korbut R, Robak J et al (1987) On the mechanism of anti thrombotic action of flavonoids. Biochem Pharmacol 36:317–322

    Article  CAS  Google Scholar 

  78. Graziani Y, Chayoth R, Karny N et al (1982) Regulation of protein kinase activity by quercetin in Ehrlich Ascites tumor cells. Biochim Biophys Acta 714:415–421

    Article  CAS  Google Scholar 

  79. Ferriola PC, Cody V, Middleton E Jr (1989) Protein kinase C inhibition by plant flavonoids, kinetic mechanism and structure-activity relationships. Biochem Pharmacol 38:1617–1624

    Article  CAS  Google Scholar 

  80. Bird TA, Schule HD, Delaney PB et al (1992) Evidence that MAP (mitogen-activated protein) kinase activation may be a necessary but not sufficient signal for a restricted subset of responses in IL-1-treated epidermoid cells. Cytokine 4:429–440

    Article  CAS  Google Scholar 

  81. Rogers JC, Williams DL Jr (1989) Kaempferol inhibits myosin light chain kinase. Biochem Biophys Res Commun 164:419–425

    Article  CAS  Google Scholar 

  82. Geahlen RL, Koonchanok NM, McLaughlin JL (1989) Inhibition of protein tyrosine kinase activity by flavonoids and related compounds. J Nat Prod 52:982–986

    Article  CAS  Google Scholar 

  83. Cushman M, Nagarathnam D, Burg DL et al (1991) Synthesis and protein-tyrosine kinase inhibitory activities of flavonoid analogues. J Med Chem 34:798–806

    Article  CAS  Google Scholar 

  84. Hagiwara M, Inoue S, Tanaka T et al (1988) Differential effects of flavonoids as inhibitors of tyrosine protein kinases and serine/threonine protein kinases. Biochem Pharmacol 37:2987–2992

    Article  CAS  Google Scholar 

  85. Lee TP, Matteliano ML, Middleton E Jr (1982) Effect of quercetin on human polymorphonuclear leukocyte lysosomal enzyme release and phospholipid metabolism. Life Sci 31:2765–2774

    Article  CAS  Google Scholar 

  86. Gil B, Sanz MJ, Terencio MC et al (1994) Effects of flavonoids on Naja naja and human recombinant synovial phospholipase A2 and inflammatory responses in mice. Life Sci 54:PL333–PL338

    Article  CAS  Google Scholar 

  87. Zyma VL, Miroshnichenko NS, Danilova VM et al (1988) Interaction of flavonoid compounds with contractile proteins of skeletal muscle. Gen Physiol Biophys 7:165–175

    CAS  Google Scholar 

  88. Wuthrich A, Schatzmann HJ (1980) Inhibition of the red cell calcium pump by quercetin. Cell Calcium 1:21–35

    Article  Google Scholar 

  89. Fischer TH, Campbell KP, White GC (1987) An investigation of functional similarities between the sarcoplasmic reticulum and platelet calcium-dependent adenosinetriphosphatase with the inhibitors quercetin and calmidazolium. Biochemistry 26:8024–8030

    Article  CAS  Google Scholar 

  90. Sekiya K, Okuda H (1982) Selective inhibition of platelet lipoxygenase by baicalein. Biochem Biophys Res Commun 105:1090–1995

    Article  CAS  Google Scholar 

  91. Yamamoto S, Yoshimoto T, Furukawa M et al (1984) Arachidonate S-lipoxygenase and its new inhibitors. J Allergy Clin Immunol 74:349–352

    Article  CAS  Google Scholar 

  92. Furukawa M, Yoshimoto T, Ochi K et al (1984) Studies on arachidonate 5-lipoxygenase of rat basophilic leukemia cells. Biochim Biophys Acta 795:458–465

    Article  CAS  Google Scholar 

  93. Ferrandiz ML, Ramachandran Nair AG, Alcaraz MJ (1990) Effect of flavonoids from Spanish and Indian medicinal herbs on arachidonate metabolism in rat peritoneal leukocytes. Pharmazie 45:444–445

    CAS  Google Scholar 

  94. Butenko IG, Gladtchenko SV, Galushko SV (1993) Anti-inflammatory properties and inhibition of leukotriene C4 biosynthesis in vitro by flavonoid baicalein from Scutellaria baicalensis Georgy roots. Agents Actions 39:C49–C51

    Article  CAS  Google Scholar 

  95. Rao GH, Radha E, White JG (1985) Irreversible platelet aggregation does not depend on lipoxygenase metabolites. Biochem Biophys Res Commun 131:50–57

    Article  CAS  Google Scholar 

  96. Baumann J, von Bruchhausen F, Wurm G (1980) Flavonoids and related compounds as inhibitors of arachidonic acid peroxidation. Prostaglandins 20:627–639

    CAS  Google Scholar 

  97. Landolfi R, Mower RL, Steiner M (1984) Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure-activity relationships. Biochem Pharmacol 33:1525–1530

    Article  CAS  Google Scholar 

  98. Fiebrich F, Koch H (1979) Silymarin, an inhibitor of prostaglandin synthetase. Experientia 35:1550–1552

    Article  CAS  Google Scholar 

  99. Cockcroft S (1982) Phosphatidylinositol metabolism in mast cells and neutrophils. Cell Calcium 3:337–349

    Article  CAS  Google Scholar 

  100. Spedding G, Ratty A, Middleton E Jr (1989) Inhibition of reverse transcriptases by flavonoids. Antiviral Res 12:99–110

    Article  CAS  Google Scholar 

  101. Ono K, Nakane H, Fukushima M et al (1989) Inhibition of reverse transcriptase activity by a flavonoid compound, 5,6,7-trihydroxyflavone. Biochem Biophys Res Commun 160:982–987

    Article  CAS  Google Scholar 

  102. Ono K, Nakane H, Fukushima M et al (1990) Differential inhibitory effects of various flavonoids on the activities of reverse transcriptase and cellular DNA and RNA polymerases. Eur J Biochem 190:469–476

    Article  CAS  Google Scholar 

  103. Inouye Y, Yamaguchi K, Take Y et al (1989) Inhibition of avian myeloblastosis virus reverse transcriptase by flavones and isoflavones. J Antibiot (Tokyo) 42:1523–1525

    Article  CAS  Google Scholar 

  104. Brinkworth RI, Stoermer MJ, Fairlie DP (1992) Flavones are inhibitors of HIV-1 proteinase. Biochem Biophys Res Commun 2:631–637

    Article  Google Scholar 

  105. Fesen MR, Kohn KW, Leteurtre F et al (1993) Inhibitors of human immunodeficiency virus integrase. Proc Natl Acad Sci USA 90:2399–2403

    Article  CAS  Google Scholar 

  106. Kato R, Nakadate T, Yamamoto S et al (1983) Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion and ornithine decarboxylase activity by quercetin: possible involvement of lipoxygenase inhibition. Carcinogenesis 4:1301–1305

    Article  CAS  Google Scholar 

  107. Wei H, Tye L, Bresnick E et al (1990) Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res 50:499–502

    CAS  Google Scholar 

  108. Yamashita Y, Kawada S, Nakano H (1990) Induction of mammalian topoisomerase II dependent DNA cleavage by nonintercalative flavonoids, genistein and orobol. Biochem Pharmacol 39:737–744

    Article  CAS  Google Scholar 

  109. Austin CA, Patel S, Ono K et al (1992) Site-specific DNA cleavage by mammalian DNA topoisomerase II induced by novel flavone and catechin derivatives. Biochem J 282:883–889

    CAS  Google Scholar 

  110. Das M, Singh SV, Mukhtar H et al (1986) Differential inhibition on rat and human glutathione 5-transferase isoenzymes by plant phenols. Biochem Biophys Res Commun 141:1170–1176

    Article  CAS  Google Scholar 

  111. Alworth WL, Dang CC, Ching LM et al (1980) Stimulation of mammalian epoxide hydrase activity by flavones. Xenobiotica 10:395–400

    Article  CAS  Google Scholar 

  112. Klopman G, Dimayuga ML (1988) Computer-automated structure evaluation of flavonoids and other structurally related compounds as glyoxalase I enzyme inhibitors. Mol Pharmacol 34:218–222

    CAS  Google Scholar 

  113. Bindoli A, Valente M, Cavalini L (1985) Inhibitory action of quercetin on xanthine oxidase and xanthine dehydrogenase. Pharmacol Res Commun 17:831–839

    Article  CAS  Google Scholar 

  114. Hayashi T, Sawa K, Kawasaki M et al (1988) Inhibition of cow’s milk xanthine oxidase by flavonoids. J Nat Prod 51:345–348

    Article  CAS  Google Scholar 

  115. Chang WS, Lee YJ, Lu FJ et al (1993) Inhibitory effects of flavonoids on xanthine oxidase. Anticancer Res 13:2165–2170

    CAS  Google Scholar 

  116. Kellis JT Jr, Vickery LE (1984) Inhibition of human estrogen synthetase (aromatase) by flavones. Science 225:1032–1034

    Article  CAS  Google Scholar 

  117. Wang C, Makela T, Hase T et al (1994) Lignans and flavonoids inhibit aromatase enzyme in human preadipocytes. J Steroid Biochem Mol Biol 50:205–212

    Article  CAS  Google Scholar 

  118. Okuda J, Miwa I, Inagaki K et al (1984) Inhibition of aldose reductase by 3′,4′-dihydroxyflavones. Chem Pharm Bull 32:767–772

    Article  CAS  Google Scholar 

  119. Okuda J, Miwa I, Inagaki K et al (1982) Inhibition of aldose reductases from rat and bovine lenses by flavonoids. Biochem Pharmacol 31:3807–3822

    Article  CAS  Google Scholar 

  120. Maser E, Netter KJ (1991) Reductive metabolism of metyrapone by a quercitrin-sensitive ketone reductase in mouse liver cytosol. Biochem Pharmacol 41:1595–1599

    Article  CAS  Google Scholar 

  121. Kuppusamy UR, Khoo HE, Das NP (1990) Structure-activity studies of flavonoids as inhibitors of hyaluronidase. Biochem Pharmacol 40:397–401

    Article  CAS  Google Scholar 

  122. Seddon AP, Douglas KT (1981) Photo-induced covalent labelling of malate dehydrogenase by quercetin. Biochem Biophys Res Commun 102:15–21

    Article  CAS  Google Scholar 

  123. Grisiola S, Rubio V, Feijoo B et al (1975) Inhibition of lactic dehydrogenase and of pyruvate kinase by low concentrations of quercetin. Physiol Chem Phys 7:473–475

    Article  Google Scholar 

  124. Lee PS, Shimizu K, Rossi TM et al (1988) Selectivity of quercetin inhibition on stimulated amylase release in rat pancreatic acini. Pancreas 3:17–23

    Article  Google Scholar 

  125. Nose K (1984) Inhibition by flavonoids of RNA synthesis in permeable WI-38 cells and of transcription by RNA polymerase II. Biochem Pharmacol 33:3823–3827

    Article  CAS  Google Scholar 

  126. Nagai T, Miyaichi Y, Tomimori T et al (1990) Inhibition of influenza virus sialidase and anti-influenza virus activity by plant flavonoids. Chem Pharm Bull 38:1329–1332

    Article  CAS  Google Scholar 

  127. Nagai T, Miyaichi Y, Tomimori T et al (1992) In vivo anti-influenza virus activity of plant flavonoids possessing inhibitory activity for influenza virus sialidase. Antiviral Res 19:207–217

    Article  CAS  Google Scholar 

  128. Soliman KF, Mazzio EA (1998) In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proc Exp Biol Med 218:390–397

    CAS  Google Scholar 

  129. Thull U, Testa B (1994) Screening of unsubstituted cyclic compounds as inhibitors of monoamine oxidase. Biochem Pharmacol 47:2307–2310

    Article  CAS  Google Scholar 

  130. Kim HP, Mani I, Iversen L et al (1998) Effects of naturally occurring flavonoids and bioflavonoids on epidermal cycloxygenase and lipoxygenase from guinea pigs. Prostag Leukotr Ess 58:17–24

    Article  CAS  Google Scholar 

  131. Jachak SM (2001) Natural products: potential source of COX inhibitors. CRIPS 2(1):12–15

    Google Scholar 

  132. Carlo GD, Mascolo N, Izzo AA et al (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65:337–353

    Article  Google Scholar 

  133. Vessal M, Hemmati M, Vasei M (2003) Antidiabetic effects of quercetin in streptozocin induced diabetic rats. Comp Biochem Physiol C 135:357–364

    Article  CAS  Google Scholar 

  134. Hif CS, Howell SL (1984) Effects of epicatechin on rat islets of langerhans. Diabetes 33:291–296

    Article  Google Scholar 

  135. Hif CS, Howell SL (1985) Effects of flavonoids on insulin secretion and 45 Ca2+ handling in rat islets of langerhans. J Endocrinol 107:1–8

    Article  Google Scholar 

  136. Rijke ED, Out P, Niessen WMA et al (2006) Analytical separation and detection methods for flavonoids. J Chromatogr A 1112:31–63

    Article  CAS  Google Scholar 

  137. Jung WY, Park SJ, Park DH et al (2010) Quercetin impairs learning and memory in normal mice via suppression of hippocampal phosphorylated cyclic AMP response element-binding protein expression. Toxicol Lett 197:97–105

    Article  CAS  Google Scholar 

  138. Maher P, Akalshi T, Abe K (2006) Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci USA 103:16568–16573

    Article  CAS  Google Scholar 

  139. Fernandez SP, Wasowski C, Loscalzo LM et al (2006) Central nervous system depressant action of flavonoid glycosides. Eur J Pharmacol 539:168–176

    Article  CAS  Google Scholar 

  140. Carlo GD, Autore G, Izzo AA et al (1993) Inhibition of intestinal motility and secretion by flavonoids in mice and rats; structure activity relationships. J Pharm Pharmcol 45:1045–1059

    Article  Google Scholar 

  141. Gulati RK, Agarwal S, Agarwal SS (1995) Hepatoprotective studies on Phyllanthus emblica and quercetin. Indian J Exp Biol 33:261–268

    CAS  Google Scholar 

  142. Oh H, Kim D, Cho J et al (2004) Hepatoprotective and free radical activities of phenolic petrosins and flavonoids isolated from Equisetum arvense. J Ethnopharmacol 95:421–424

    Article  CAS  Google Scholar 

  143. Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  Google Scholar 

  144. Rattanachaikunsopon P, Phumkhachorn P (2010) Contents and antibacterial activity of flavonoids extracted from leaves of Psidium guajava. J Med Plants Res 4:393–396

    CAS  Google Scholar 

  145. Le Marchand L (2002) Cancer preventive effects of flavonoids-a review. Biomed Pharmacother 56:296–301

    Article  Google Scholar 

  146. Knekt P, Jarvinen R, Seppanen R et al (1997) Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 146:223–230

    Article  CAS  Google Scholar 

  147. Knekt P, Kumpulainen J, Jarvinen R et al (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568

    CAS  Google Scholar 

  148. Le Marchand L, Murphy SP, Hankin JH et al (2000) Intake of flavonoids and lung cancer. J Natl Cancer Inst 92:154–160

    Article  Google Scholar 

  149. Stefani ED, Boffetta P, Deneo-Pellegrini H et al (1999) Dietary antioxidants and lung cancer risk: a case–control study in Uruguay. Nutr Cancer 34:100–110

    Article  CAS  Google Scholar 

  150. Garcia-Closas R, Gonzalez CA, Agudo A et al (1999) Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain. Cancer Causes Control 10:71–75

    Article  CAS  Google Scholar 

  151. Cushman M, Nagarathnam D (1991) Cytotoxicities of some flavonoid analogues. J Nat Prod 54:1656–1660

    Article  CAS  Google Scholar 

  152. Zhang Q, Zhao XH, Wang ZJ (2008) Flavones and flavonols exert cytotoxic effects on a human oesophageal adenocarcinoma cell line (OE33) by causing G2/M arrest and inducing apoptosis. Food Chem Toxicol 46:2042–2053

    Article  CAS  Google Scholar 

  153. Zhang Q, Zhao XH, Wang ZJ (2009) Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicol In Vitro 23:797–807

    Article  CAS  Google Scholar 

  154. Takagaki N, Sowa Y, Oki T (2005) Apigenin induces cell cycle arrest and p21/WAF1 expression in a p53-independent pathway. Int J Oncol 26:185–189

    CAS  Google Scholar 

  155. Lim do Y, Jeong Y, Tyner AL et al (2007) Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. Am J Physiol Gastrointest Liver Physiol 292:G66–G75

    Article  CAS  Google Scholar 

  156. Chiang LC, Ng LT, Lin IC et al (2006) Anti-proliferative effect of apigenin and its apoptotic induction in human Hep G2 cells. Cancer Lett 237:207–214

    Article  CAS  Google Scholar 

  157. Granado-Serrano AB, Martin MA, Bravo L et al (2006) Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J Nutr 136:2715–2721

    CAS  Google Scholar 

  158. Gupta S, Afaq F, Mukhtar H (2002) Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene 21:3727–3738

    Article  CAS  Google Scholar 

  159. Vijayababu MR, Kanagaraj P, Arunkumar A (2006) Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3. Oncol Res 16:67–74

    CAS  Google Scholar 

  160. Zheng PW, Chiang LC, Lin CC (2005) Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci 76:1367–1379

    Article  CAS  Google Scholar 

  161. Horinaka M, Yoshida T, Shiraishi T et al (2005) Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene 24:7180–7189

    Article  CAS  Google Scholar 

  162. Tanaka T, Makita H, Kawabata K et al (1997) Chemoprevention of azoxymethane-induced rat colon carcinogenesis by the naturally occurring flavonoids, diosmin and hesperidin. Carcinogenesis 18:957–965

    Article  CAS  Google Scholar 

  163. Mukhtar H, Agarwal R (1996) Skin cancer chemoprevention. J Investig Dermatol Symp Proc 1:209–214

    CAS  Google Scholar 

  164. Yang M, Tanaka T, Hirose Y et al (1997) Chemopreventive effects of diosmin and hesperidin on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced urinary-bladder carcinogenesis in male ICR mice. Int J Cancer 73:719–724

    Article  CAS  Google Scholar 

  165. Balasubramanian S, Govindasamy S (1996) Inhibitory effect of dietary flavonol quercetin on 7, 12-dimethylbanz[a]anthracene-induced hamster buccal pouch carcinogenesis. Carcinogenesis 17:877–879

    Article  CAS  Google Scholar 

  166. Verma AK, Johnson JA, Gould MN et al (1988) Inhibition of 7, 12-dimethylbenz(a) anthracene and N-nitrosomethylurea-induced rat mammary cancer by dietary flavonol quercetin. Cancer Res 48:5754–5758

    CAS  Google Scholar 

  167. Khanduja KL, Gandhi RK, Pathania V et al (1999) Prevention of N-nitrosodiethylamine-induced lung tumorigenesis by ellagic acid and quercetin in mice. Food Chem Toxicol 37:313–318

    Article  CAS  Google Scholar 

  168. Akagi K, Hirose M, Hoshiya T et al (1995) Modulating effects of ellagic acid, vanillin and quercetin in a rat medium term multi-organ carcinogenesis model. Cancer Lett 94:113–121

    Article  CAS  Google Scholar 

  169. Koh MS, Willoughby DA (1979) A comparison of coumarin and levamisole on parameters of the inflammatory system. Agents Actions 9:284–288

    Article  CAS  Google Scholar 

  170. Khayyal MT, el-Ghazaly MA, El-khatib AS (1993) Mechanisms involved in the antiinflammatory effect of propolis extract. Drugs Exp Clin Res 19:197–203

    CAS  Google Scholar 

  171. Richter M, Ebermann R, Marian B (1999) Quercetin-induced apoptosis in colorectal tumor cells: possible role of EGF receptor signaling. Nutr Cancer 34:88–99

    Article  CAS  Google Scholar 

  172. Barinaga M (1996) Forging a path to cell death. Science 273:735–737

    Article  CAS  Google Scholar 

  173. Edwards MJ, Gamel JW, Feuer EJ (1998) Improvement in the prognosis of breast cancer from 1965 to 1984. J Clin Oncol 16:1030–1035

    CAS  Google Scholar 

  174. Habtemariam S (1997) Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-alpha in L-929 tumor cells. J Nat Prod 60:775–778

    Article  CAS  Google Scholar 

  175. Harper JW, Adami GR, Wei N et al (1993) The p21 cdk-interacting protein cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  CAS  Google Scholar 

  176. Jager W, Zembsch B, Wolschann P et al (1998) Metabolism of the anticancer drug flavopiridol, a new inhibitor of cyclin dependent kinases, in rat liver. Life Sci 62:1861–1873

    Article  CAS  Google Scholar 

  177. Reiners JJ Jr, Clift R, Mathieu P (1999) Suppression of cell cycle progression by flavonoids: dependence on the aryl hydrocarbon receptor. Carcinogenesis 20:1561–1566

    Article  CAS  Google Scholar 

  178. Ueyama Y, Suzuki K, Fukuchi-Mizutani M et al (2002) Molecular and biochemical characterization of torenia flavonoid 3′-hydroxylase and flavone synthase II and modification of flower colour by modulating the expression of these genes. Plant Sci 163:253–263

    Article  CAS  Google Scholar 

  179. Fukui Y, Tanaka Y, Kusumi T (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′, 5′-hydroxylase gene. Phytochemistry 63:15–23

    Article  CAS  Google Scholar 

  180. Tohge T, Nishiyama Y, Hirai MY et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  CAS  Google Scholar 

  181. de Vos R, Bovy A, Busink H et al (2000) Improving health potential of crop plants by means of flavonoid pathway engineering. Polyphenols Commun 1:25–26

    Google Scholar 

  182. Martens S, Forkmann G (1999) Cloning and expression of flavone synthase II from Gerbera hybrids. Plant J 20:611–618

    Article  CAS  Google Scholar 

  183. Dias AP, Braun EL, McMullen MD et al (2003) Recently duplicated maize R2R3 Myb genes provide evidence for distinct mechanisms of evolutionary divergence after duplication. Plant Physiol 131:610–620

    Article  CAS  Google Scholar 

  184. Mehrtens F, Kranz H, Bednarek P et al (2005) The Arabidopsis thaliana transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    Article  CAS  Google Scholar 

  185. Grotewold E, Chamberlin M, Snook M et al (1998) Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10:721–740

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Zhang, Q., Zhao, X., Qiu, H. (2013). Flavones and Flavonols: Phytochemistry and Biochemistry. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_60

Download citation

Publish with us

Policies and ethics