Skip to main content

Laser Components

  • Chapter
  • First Online:
Fibre Optic Communication

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 161))

  • 3270 Accesses

Abstract

The chapter covers In P-based laser diodes (1300–1650nm wavelength range) deployed as transmitter devices in today’s optical communication systems. Only discrete directly modulated devices are considered in this chapter which is followed by two other laser-related articles dealing specifically with ultra-fast and wavelength-tunable devices. In the first part, a description of basic laser structures and technology, of relevant gain materials and their impact on lasing properties, and of fundamental characteristics of Fabry–Pérot devices will be presented. The second part is devoted to single-wavelength lasers focusing on design rules and various implementations. Essentially, distributed feedback (DFB) devices are treated but other options such as the so-called "discrete mode" laser diodes will also be outlined. In the third part, surface-emitting laser diodes are addressed including vertical cavity surface-emitting lasers (VCSEL) and horizontal cavity DFB structures designed for surface emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, R.O. Carlson, Coherent light emission from GaAs p–n junctions. Phys. Rev. Lett. 9, 366–368 (1962)

    Article  ADS  Google Scholar 

  2. M.I. Nathan, W.P. Dumke, G. Burns, F.H. Dill, G.J. Lasher, Stimulated emission of radiation from GaAs p–n junction. Appl. Phys. Lett. 1, 62–64 (1962)

    Article  ADS  Google Scholar 

  3. Z.I. Alferov, V.M. Andreev, V.I. Korolkov, E.L. Portnoi, D.N. Tretyakov, Injection properties of n-\(\textup{Al}_{{x}}\textup{Ga}_{{1-x}}\textup{As}\) p-GaAs heterojunctions. Sov. Phys. Semicond. 2, 843 (1969)

    Google Scholar 

  4. I. Hayashi, M.B. Panish, P.W. Foy, A low threshold room temperature injection laser. IEEE J. Quantum Electron. QE-5, 210–211 (1969)

    ADS  Google Scholar 

  5. J.J Hsieh, Room temperature operation of GaInAsP/InP double heterostructure diode lasers emitting at 1.1 µm. Appl. Phys. Lett. 28, 283–285 (1976)

    Article  ADS  Google Scholar 

  6. T. Yamamoto, K. Sakai, S. Akiba, Y. Suematsu, \(\textup{In}_{{1-x}}\textup{Ga}_{{x}}\textup{As}_{{y}}\textup{P}_{{1-y}}\)/InP DH lasers fabricated on InP(100) substrates. IEEE J. Quantum Electron. QE-14, 95–98 (1978)

    Article  ADS  Google Scholar 

  7. G.H.B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980). ISBN: 0-471-27685-5

    Google Scholar 

  8. N. Grote, The III–V materials for Infra-red devices, in Materials for Optoelectronics, ed. by M. Quillec (Kluwer Academic, Amsterdam, 1996), pp. 153–183

    Chapter  Google Scholar 

  9. K. Utaka, K. Kobayashi, Y. Suematsu, Lasing characteristics of 1.5–1.6 µm GaInAsP/InP integrated twin-guide lasers with first-order distributed Bragg reflectors. IEEE J. Quantum Electron. QE-17, 651–658 (1981)

    Article  ADS  Google Scholar 

  10. K. Kadoiwa, K. Ono, H. Nishiguchi, K. Matsumoto, Y. Ohkura, T. Yagi, p-substrate partially inverted buried heterostructure distributed feedback laser diode performance improvement by inserting Zn diffusion-stopping layer. Jpn. J. Appl. Phys. 45, 7704–7708 (2006)

    Article  ADS  Google Scholar 

  11. H. Sato, T. Tsuchuya, T. Kitatani, N. Takahashi, K. Oouchi, K. Nakahara, M. Aoki, Highly reliable 1.3 µm InGaAlAs buried heterostructure laser diode for 10GbE, Proc. 16th Internat. Conf. Indium Phosphide Relat. Mater. (IPRM 2004) Kagashima, Japan, 2004, pp. 731–733.

    Google Scholar 

  12. W. Feng, J.Q. Pan, L.F. Wang, J. Bian, B.J. Wang, F. Zhou, X. An, L.J. Zhao, H.L. Zhu, W. Wang, Fabrication of InGaAlAs MQW buried heterostructure lasers by narrow stripe selective MOVPE. J. Phys. D Appl. Phys. 40, 361–365 (2007)

    Article  ADS  Google Scholar 

  13. Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, A. Suzuki, Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers. IEEE J. Quantum Electron. 34, 1970–1978 (1998)

    Article  ADS  Google Scholar 

  14. P.J.A. Thijs, E.A. Montie, T. van Dongen, Structures for improved 1.5 µm wavelength lasers grown by LP-OMVPE; InGaAs-InP strained-layer quantum wells a good candidate. J. Cryst. Growth 107, 731–740 (1991)

    Article  ADS  Google Scholar 

  15. P.J.A. Thijs, J.J.M. Binsma, L.F. Tiemeijer, T. van Dongen, Improved performance 1.5 µm wavelength tensile and compressively strained InGaAs-InGaAsP quantum well lasers, 17th Europ. Conf. Opt. Commun. (ECOC'91), Paris, Techn. Digest 2, 1991, pp. 31–38.

    Google Scholar 

  16. M.A. Newkirk, B.I. Miller, U. Koren, M.G. Young, M. Chien, R.M. Jopson, C.A. Burrus, 1.5 µm multi quantum-well semiconductor optical amplifier with tensile and compressively strained wells for polarization-independent gain. IEEE Photon. Technol. Lett. 5, 406–408 (1993)

    Article  ADS  Google Scholar 

  17. T.J. Badcock, H.Y. Liu, K.M. Groom, C.Y. Jin, M. Gutierrez, M. Hopkinson, D.J. Mowbray, M.S. Skolnick, 1.3 µm InAs/GaAs quantum-dot laser with low-threshold current density and negative characteristic temperature above room temperature. Electron. Lett. 42, 922–923 (2006)

    Article  Google Scholar 

  18. G.H. Duan, A. Shen, A. Akrout, F. van Dijk, F. Lelarge, F. Pommereau, O. Le-Gouezigou, J.G. Provost, H. Gariah, High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications. Bell Labs Tech. J. 14, 63–84 (2009)

    Article  Google Scholar 

  19. C.S. Lee, W. Guo, D. Basu, P. Bhattacharya, High performance tunnel injection quantum dot comb laser. Appl. Phys. Lett. 96, 101107 (2010)

    Article  ADS  Google Scholar 

  20. M. Moehrle, H. Roehle, A. Sigmund, A. Suna, F. Reier, High-performance all-active tapered 1550 nm InGaAsP BH-FP lasers, Proc. 14th Internat. Conf. Indium Phosphide Relat. Mater. (IPRM 2002), Stockholm, 2002, pp. 27–30

    Google Scholar 

  21. S.W. Park, J.H. Han, Y.T. Han, S.S. Park, B.Y. Yoon, B.K. Kim, H.K. Sung, J.I. Song, Two-step laterally tapered spot-size convertor 1.55 µm laser diode having a high slope efficiency. IEEE Photon. Technol. Lett. 18, 2138–2140 (2006)

    Google Scholar 

  22. H. Kobayashi, M. Ekawa, N. Okazaki, O. Aoki, S. Ogita, H. Soda, Tapered thickness MQW waveguide BH MQW lasers. IEEE Photon. Technol. Lett. 6, 1080–1081 (1994)

    Article  ADS  Google Scholar 

  23. A. Guermache, V. Voiriot, N. Bouche, F. Lelarge, D. Locatelli, R.M. Capella, J. Jacquet, 1 W fiber coupled power InGaAsP/InP 14xx pump laser for Raman amplification. Electron. Lett. 40, 1535–1536 (2004)

    Article  Google Scholar 

  24. M. Haverkamp, G. Kochem, K. Boucke, E. Schulze, H. Roehle, 1.1 W four-wavelength Raman pump using BH lasers, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'07), Techn. Digest (Anaheim, CA, USA, 2007), paper OMK7

    Google Scholar 

  25. H. Kogelnik, C.V. Shank, Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2335 (1972)

    Article  ADS  Google Scholar 

  26. M. Kamp, J. Hofmann, F. Schaefer, M. Reinhard, M. Fischer, T. Bleuel, J.P. Reithmaier, A. Forchel, Lateral coupling – a material independent way to complex coupled DFB lasers. Opt. Mater. 17, 19–25 (2001)

    Article  ADS  Google Scholar 

  27. H. Burkhard, S. Hansmann, Transmitters, in Fiber Optic Communication Devices, ed. by N. Grote, H. Venghaus (Springer, Berlin, 2001), pp. 71–116

    Chapter  Google Scholar 

  28. G.P. Agrawal, A.H. Bobeck, Modeling of distributed-feedback semiconductor lasers with axially-varying parameters. IEEE J. Quantum Electron. 24, 2407–2414 (1988)

    Article  ADS  Google Scholar 

  29. A.J. Lowery, A. Keating, C.N. Murtonen, Modeling the static and dynamic behavior of quarter-wave-shifted DFB lasers. IEEE J. Quantum Electron. 28, 1874–1883 (1992)

    Article  ADS  Google Scholar 

  30. A.K. Verma, M. Steib, Y.L. Ha, T. Sudo, 25 Gbps 1.3 µm DFB laser for 10–25 km transmission in 100 GbE systems, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'09), Techn. Digest (San Diego, CA, USA, 2009), paper OThT2

    Google Scholar 

  31. G.P. Li, T. Makino, R. Moore, N. Puetz, K.-W. Leong, H. Lu, Partly gain-coupled 1.55 µm strained-layer multiquantum-well DFB laser. IEEE J. Quantum Electron. 29, 1736–1742 (1993)

    Article  ADS  Google Scholar 

  32. J. Kreissl, W. Brinker, E. Lenz, T. Gaertner, W. Rehbein, S. Bauer, B. Sartorius, Isolator-free directly modulated complex-coupled DFB lasers for low cost applications, Opt. Fiber Commun. Conf. (OFC'05), Techn. Digest (Anaheim, CA, USA, 2005), vol. 4, pp. 3–4

    Google Scholar 

  33. J. Kreissl, U. Troppenz, W. Rehbein, T. Gaertner, P. Harde, M. Radziunas, 40 Gbit/s directly modulated passive feedback laser with complex-coupled DFB section, Proc. 33rd Europ. Conf. Opt. Commun. (ECOC'07), Berlin, 2007, paper We.8.1.4

    Google Scholar 

  34. M. Moehrle, A. Sigmund, A. Suna, L. Moerl, W. Fuerst, A. Dounia, W.D. Molzow, High single-mode yield, tapered 1.55 µm DFB lasers for CWDM applications, Proc. 31st Europ. Conf. Opt. Commun. (ECOC'05), Glasgow, UK, 2005, paper Tu 4.5.4

    Google Scholar 

  35. L. Moerl, M. Moehrle, W. Brinker, A. Sigmund, N. Grote, Tapered 1550 nm DFB lasers with low feedback sensitivity, Proc. 32th Europ. Conf. Opt. Commun. (ECOC'06), Cannes, France, 2006, paper Mo3.4.3

    Google Scholar 

  36. M. Moehrle, W. Brinker, C. Wagner, G. Przyrembel, A. Sigmund, W.D. Molzow, First complex coupled 1490 nm CSDFB lasers: High yield, low feedback sensitivity, and uncooled 10 Gbit/s modulation, Proc. 35th Europ. Conf. Opt. Commun. (ECOC'09), Vienna, Austria, 2009, paper We 8.1.2

    Google Scholar 

  37. C. Herbert, D. Jones, A. Kaszubowska, B. Kelly, M. Rensing, J. O'Carroll, P.M. Anandarajah, P. Perry, L.P. Barry, J. O'Gorman, Discrete mode lasers for communication applications. IET J. Optoelectron. 3, 1–17 (2009)

    Article  Google Scholar 

  38. R. Phelan, B. Kelly, J. O'Carroll, C. Herbert, A. Duke, J. O'Gorman, -40 °C < T < 95 °C mode-hop-free operation of uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 µm. Electron. Lett. 45, 43–45 (2009)

    Article  Google Scholar 

  39. B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O'Carroll, M. Rensing, J. Wendelboe, C.B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L.P. Barry, J. O'Gorman, Discrete mode laser diodes with very narrow linewidth emission. Electron. Lett. 43, 1282–1283 (2007)

    Article  Google Scholar 

  40. K. Iga, Surface-emitting laser – its birth and generation of new optoelectronics field. IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000)

    Article  Google Scholar 

  41. F. Koyama, S. Kinoshita, K. Iga, Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface-emitting laser. Appl. Phys. Lett. 55, 221–222 (1989)

    Article  ADS  Google Scholar 

  42. S. Nakagawa, E. Hall, G. Almuneau, J.K. Kim, D.A. Buell, H. Kroemer, L.A. Coldren, 1.55 µm InP-lattice-matched VCSELs with AlGaAsSb-AlAsSb DBR. IEEE J. Sel. Top. Quantum Electron. 7, 224–230 (2001)

    Article  Google Scholar 

  43. M. Müller, W. Hofmann, G. Böhm, M.-C. Amann, Short-cavity long-wavelength VCSELs with modulation-bandwidth in excess of 15 GHz. IEEE Photon. Technol. Lett. 21, 1615–1617 (2009)

    Article  ADS  Google Scholar 

  44. W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, C. Chang-Hasnain, Long-wavelength high-contrast grating vertical-cavity surface-emitting laser. IEEE Photon. Technol. Lett. 22, 415–422 (2010)

    Google Scholar 

  45. C. Chase, Y. Rao, W. Hofmann, C. Chang-Hasnain, 1550-nm high contrast grating VCSEL. Opt. Express 18, 9358–9365 (2010)

    Article  ADS  Google Scholar 

  46. M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, G. Abstreiter, M.-C. Amann, Low-resistance InGa(Al)As tunnel junctions for long-wavelength vertical-cavity surface-emitting lasers. Jpn. J. Appl. Phys. 39, 1727–1729 (2000)

    Article  ADS  Google Scholar 

  47. K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, M. Tsuji, 1.1 µm-range high-speed tunnel junction vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett. 19, 1883–1885 (2007)

    Article  ADS  Google Scholar 

  48. E. Kapon, A. Sirbu, Long-wavelength VCSELs: Power – efficient answer. Nat. Photon. 3, 27–29 (2009)

    Article  ADS  Google Scholar 

  49. W. Hofmann, M. Müller, A. Nadtochiy, C. Meltzer, A. Mutig, G. Böhm, J. Rosskopf, D. Bimberg, M.-C. Amann, C. Chang-Hasnain, 22-Gbit/s long wavelength VCSELs. Opt. Express 17, 17547–17554 (2009)

    Article  ADS  Google Scholar 

  50. M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, M.-C. Amann, Room-temperature operation of index-guided 1.55 µm InP-based vertical-cavity surface-emitting laser. Electron. Lett. 36, 437–438 (2000)

    Article  Google Scholar 

  51. N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M.H Hu, X.S. Liu, M.J. Li, R. Bhat, C.E. Zah, Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs–InP DBR grown by MOCVD. IEEE J. Sel. Top. Quantum Electron. 11, 990–998 (2005)

    Article  Google Scholar 

  52. A. Mereuta, V. Iakovlev, A. Caliman, A. Syrbu, P. Royo, A. Rudra, E. Kapon, InAlGaAs – AlGaAs wafer fused VCSELs emitting at 2 µm wavelength. IEEE Photon. Technol. Lett. 20, 24–26 (2008)

    Article  ADS  Google Scholar 

  53. A. Syrbu, A. Mereuta, V. Iakovlev, A. Caliman, P. Royo, E. Kapon, 10 Gbps VCSELs with high single mode output in 1310 nm and 1550 nm wavelength bands, Conf. Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'08), Techn. Digest (San Diego, CA, USA, 2008), paper OThS2

    Google Scholar 

  54. A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.A. Berseth, P. Royo, A. Syrbu, E. Kapon, Cavity mode – gain peak tradeoff for 1320 nm wafer-fused VCSELs with 3-mW single-mode emission power and 10 Gbit/s modulation speed up to 70 °C. IEEE Photon. Technol. Lett. 19, 1221–123 (2007)

    Article  Google Scholar 

  55. H. Riechert, A. Ramakrishnan, G. Steinle, Development of InGaAsN-based 1.3 µm VCSELs. Semicond. Sci. Technol. 17, 892–897 (2002)

    Article  ADS  Google Scholar 

  56. J.A. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A.E. Shukov, A.R. Kovsh, M.V. Maximov, B.V. Volovik, Z.I. Alferov, D. Bimberg, InAs-InGaAs quantum dot VCSEL's. Electron. Lett. 36, 1384–1385 (2000)

    Article  Google Scholar 

  57. P. Dowd, S.R. Johnson, S.A. Field, M. Adamcyk, S.A. Chaparro, J. Joseph, K. Hilgers, M.P. Horning, K. Shiralagi, Y.H. Zhang, Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communication applications. Electron. Lett. 39, 978–988 (2003)

    Article  Google Scholar 

  58. N. Yamamoto, K. Akahane, S. Gozu, A. Ueta, N. Ohtani, 1.55 µm-waveband emissions from Sb-based quantum-dot vertical-cavity surface-emitting laser structures fabricated on GaAs substrate. Jpn. J. Appl. Phys. 45, 3423–3426 (2006)

    Article  ADS  Google Scholar 

  59. J. Jewell, L. Graham, M. Crom, K. Maranowski, J. Smith, T. Fanning, M. Schnoes, Commercial GaInNAs VCSELs grown by MBE. phys. stat. sol. (c) 5, 2951–2956 (2008)

    Article  Google Scholar 

  60. M. Laemmlin, G. Fiol, M. Kuntz, F. Hopfer, A. Mutig, N.N. Ledentsov, A.R. Kovsh, C. Schubert, A. Jacob, A. Umbach, D. Bimberg, Quantum dot based photonic devices at 1.3 µm: Direct modulation, mode-locking, SOAs and VCSELs. phys. stat. sol. (c) 3, 391–394 (2006)

    Article  Google Scholar 

  61. M. Moehrle, J. Kreissl, W.D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, N. Grote, Ultra-low 1490 nm surface-emitting BH-DFB laser diode with integrated monitor photodiode, Proc. 22th Internat. Conf. Indium Phosphide Relat. Mater. (IPRM 2010), Takamatsu, Japan, 2010, pp. 55–58

    Google Scholar 

  62. M. Moehrle, J. Kreissl, A. Sigmund, G. Przyrembel, N. Grote, V. Plickert, I. Schlosser, K. Droegemüller, T. Neuner, 1490 nm surface emitting DFB laser diodes operated by VCSEL driver ICs, Proc. 17th OptoElectron. Commun. Conf. (OECC 2012), Busan, Korea, 2012 (in press)

    Google Scholar 

  63. K. Adachi, K. Shinoda, T. Fukamachi, T. Shiota, T. Kitatani, K. Hosomi, Y. Matsuoka, T. Sugawara, M. Aoki, A 1.3 µm lens-integrated horizontal-cavity surface-emitting laser with direct and highly efficient coupling to optical fibers, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'09), Techn. Digest (San Diego, CA, USA, 2009), paper JThA31

    Google Scholar 

  64. K. Adachi, K. Shinoda, T. Shiota, T. Fukamachi, T. Kitatani, K. Hosomi, Y. Matsuoka, T. Sugawara, M. Aoki, 100 °C, 25 Gbit/s direct modulation of 1.3 µm surface emitting laser, Conf. Lasers Electro-Opt. (CLEO/QELS 2010), Techn. Digest (San Jose, USA, 2010), paper CME4

    Google Scholar 

  65. L. Vaissie, O.V. Smolski, A. Mehta, E.G. Johnson, High efficiency surface-emission laser with subwavelength antireflection structure. IEEE Photon. Technol. Lett. 17, 732–734 (2005)

    Article  ADS  Google Scholar 

  66. P. Modh, J. Backlund, J. Bengtsson, A. Larsson, N. Shimada, T. Suharal, Multifunctional gratings for surface-emitting lasers: Design and implementation. Appl. Opt. 42, 4847–4854 (2003)

    Article  ADS  Google Scholar 

  67. G. Witjaksono, S. Li, J.L. Lee, D. Botez, W.K. Chan, Single-lobe, surface-normal beam surface emission from second-order distributed feedback lasers with half-wave grating phase. Appl. Phys. Lett. 83, 5365–5367 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Norbert Grote Dr. , Martin Möhrle Dr. or Werner Hofmann Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grote, N., Möhrle, M., Hofmann, W. (2012). Laser Components. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20517-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20517-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20516-3

  • Online ISBN: 978-3-642-20517-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics