Skip to main content

Part of the book series: Springer Series in Photonics ((PHOTONICS,volume 4))

Abstract

The performance of a fibre-optic communication system is essentially determined by the specific features of the transmitters applied to the conversion of the electrical data stream into optical signals. Semiconductor lasers are attractive coherent light sources for this purpose which combine excellent modulation properties, high efficiency and reliability with compact size enabling good fibre coupling and integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kogelnik and C.V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys. 43, 2327 (1972)

    Article  ADS  Google Scholar 

  2. G. Björk and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Techn. 5, 140 (1987)

    Article  ADS  Google Scholar 

  3. H.E. Lassen, H. Wenzel, and B. Tromborg, “Influence of series resistance on modulation responses of DFB lasers,” Electron. Lett. 29, 1124 (1993)

    Article  Google Scholar 

  4. U. Bandelow, R. Schatz, and H.-J. Wünsche, “A correct single-mode photon rate equation for multi-section lasers,” IEEE Photon. Technol. Lett. 8, 614 (1996)

    Article  ADS  Google Scholar 

  5. J.E. Bowers and M.A. Pollack, “Semiconductor lasers for telecommunications,” in Optical Fibre Telecommunications II (S.E. Miller and LP. Kaminov, eds.), (Academic Press, San Diego 1988) p. 512

    Google Scholar 

  6. S. Asada, “Waveguiding effect on modal gain in optical waveguide devices,” IEEE J. Quantum Electron. 27, 884 (1991)

    Article  ADS  Google Scholar 

  7. H. Hillmer, K. Magari, and Y. Suzuki, “Chirped gratings for DFB laser diodes using bent waveguides,” IEEE J. Photonics Technol. Lett. 5, 10 (1993)

    Article  ADS  Google Scholar 

  8. B. Zee, “Broadening mechanism in semiconductor (GaAs) lasers: limitations to single mode power emission,” IEEE J. Quantum Electron. QE 14, 727 (1978)

    Article  ADS  Google Scholar 

  9. R.H. Yan, S.W. Corzine, L.A. Coldren, and J. Suemune, “Corrections to the expression for gain in GaAs,” IEEE J. Quantum Electron. 26, 213 (1990)

    Article  ADS  Google Scholar 

  10. N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24, 1242 (1988)

    Article  ADS  Google Scholar 

  11. D.-S. Seo, J.-D. Park, J. Mclnerney, and M. Osinski, “Multiple feedback effects in asymmetric external cavity semiconductor lasers,” IEEE J. Quantum Electron. 25, 2229 (1989)

    Article  ADS  Google Scholar 

  12. Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, and Y. Kondo, “Over 100 nm wavelength tuning in superstructure grating (SSG) DBR lasers,” Electron. Lett. 29, 352 (1993)

    Article  Google Scholar 

  13. B. Borchert, B. Stegmüller, and R. Gessner, “Fabrication and characteristics of improved strained quantum-well GalnAlAs gain-coupled DFB lasers,” Electron. Lett. 29, 210 (1993)

    Article  Google Scholar 

  14. Y. Nakano, Y. Luo, and K. Tada, “Facet reflection independent, single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupling mechanism,” Appl. Phys. Lett. 55, 1606 (1989)

    Article  ADS  Google Scholar 

  15. C. Kazmierski, D. Robein, D. Mathoorasing, A. Ougazzaden, and M. Filoche, “1.5μm DFB laser with new current-induced gain gratings,” IEEE J. Select. Topics Quantum Electron. 1, 371 (1995)

    Article  Google Scholar 

  16. M. Born and E. Wolf, Principles of Optics, (Pergamon Press, Oxford) p. 50

    Google Scholar 

  17. S. Hansmann, “Transfer matrix analysis of the spectral properties of complex distributed feedback laser structures,” IEEE J. Quantum Electron. 28, 2589 (1992)

    Article  ADS  Google Scholar 

  18. J.E.A. Whiteaway, B. Garrett, and G.H.B. Thompson, “The static and dynamic characteristics of single and multiple phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 28, 1277 (1992)

    Article  ADS  Google Scholar 

  19. M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6 kHz) spectral linewidth,” Electron. Lett. 29, 1696 (1993)

    Article  ADS  Google Scholar 

  20. A. Talneau, J. Charil, A. Ougazzaden, and J.C. Bouley, “High-power operation of phase-shifted DFB lasers with amplitude-modulated coupling coefficient,” Electron. Lett. 28, 1395 (1992)

    Article  Google Scholar 

  21. Y. Kotaki, M. Matsuda, T. Fujii, and H. Ishikawa, “MQW-DFB lasers with nonuniform-depth λ/4-shifted grating,” 17th European Conference on Optical Communications (ECOC’ 91), Paris, p. 137

    Google Scholar 

  22. S. Hansmann, H. Hillmer, H. Walter, H. Burkhard, B. Hübner, and E. Kuphal, “Variation of coupling coefficients by sampled gratings in complex coupled distributed feedback lasers,” IEEE J. Select. Topics Quantum Electron. 1, 341 (1995)

    Article  Google Scholar 

  23. M. Usami and S. Akiba, “Suppression of longitudinal spatial hole-burning effect in λ/4-shifted DFB lasers by nonuniform current distribution,” IEEE J. Quantum Electron. 25, 1245 (1989)

    Article  ADS  Google Scholar 

  24. H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, and H. Imai, “Stability in single longitudinal mode operation in GalnAsP/InP phase-adjusted DFB lasers”, IEEE. J. Quantum Electron. 23, 804 (1987)

    Article  ADS  Google Scholar 

  25. Y. Arakawa and A. Yariv, “Quantum well lasers — gain, spectra, dynamics,” IEEE J. Quantum Electron. 22, 1887 (1986)

    Article  ADS  Google Scholar 

  26. J. Manning, R. Olshansky, D.M. Eye, and W. Powazinik, “Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers,” Electron. Lett. 21, 496 (1985)

    Google Scholar 

  27. L.F. Tiemeijer, P.J.A. Thijs, P.J. de Waard, J.J.M. Binsma, and T. v. Dongen, “Dependence of polarization, gain, linewidth enhancement factor, and K factor on the sign of the strain of InGaAs/InP strained-layer multiquantum well lasers,” Appl. Phys. Lett. 58, 2738 (1991)

    Article  ADS  Google Scholar 

  28. H. Burkhard and E. Kuphal, “InGaAsP/InP mushroom stripe lasers with low cw threshold and high output power,” Jpn. J. Appl. Phys. 22, L721 (1983)

    Article  ADS  Google Scholar 

  29. P.W.A. Mcllroy, A. Kurobe, Y. Uematsu, “Analysis and appHcation of theoretical gain curves to the design of multi-quantum-well lasers,” IEEE J. Quantum Electron. 21, 1958 (1985)

    Article  ADS  Google Scholar 

  30. C.H. Henry, “Theory of spontaneous emission noise in open resonators and its apphcation to lasers and optical amplifiers,” J. Lightwave Technol. 4, 288 (1986)

    Article  ADS  Google Scholar 

  31. K. Petermann, Laser Diode Modulation and Noise, (Kluwer Academic Publishers, Dordrecht 1988)

    Book  Google Scholar 

  32. T. Matsuoka, H. Nagai, Y. Noguchi, Y. Suzuki, and Y. Kawaguchi, “Effect of grating phase at the cleaved facet on DFB laser properties,” Jpn. J. Appl. Phys. 23, 138 (1984)

    Article  ADS  Google Scholar 

  33. M.-C. Amann, S. Illek, C. Schanen, and W. Thulke, “Tunable twin-guide laser: a novel laser diode with improved tuning performance,” Appl. Phys. Lett. 54, 2532 (1989)

    Article  ADS  Google Scholar 

  34. B. Tromborg, H. Olesen, and X. Pan, “Theory of linewidth for multielectrode laser diodes with spatially distributed noise sources,” IEEE J. Quantum Electron. 27, 178 (1991)

    Article  ADS  Google Scholar 

  35. L.D. Westbrook and B. Eng, “Measurements of dg/dN and dn/dN and their dependence on photon energy in λ = 1.5 μm InGaAsP laser diodes,” IEEE Proc. J. 133, 135 (1986)

    Google Scholar 

  36. M. Akbari, H.J. Schöll, G. Faby, and H. Burkhard, “Very fast computation of dynamic characteristics of injection-locked DFB-laser diodes for optical system applications,” Digest International Conference on Semiconductor and Integrated Optoelectronics, SIOE, Cardiff, UK, p. 24 (1997)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burkhard, H., Hansmann, S. (2001). Transmitters. In: Grote, N., Venghaus, H. (eds) Fibre Optic Communication Devices. Springer Series in Photonics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56466-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56466-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63124-5

  • Online ISBN: 978-3-642-56466-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics