Skip to main content
  • 5859 Accesses

Abstract

In this section we consider the fate of energetic ions (1–100 keV) incident on a solid surface. The 10 ways in which ions can interact with a surface are illustrated in Fig. 8.1. An incoming ion can be backscattered by an atom or group of atoms in the bombarded sample (1). The backscattering process generally results in a deflection of the ion’s incident path to a new trajectory after the encounter and an exchange of energy between the ion and the target atom. The energy exchange can be either elastic or inelastic, depending on the constituent particles and the energy of the ions. The momentum of an ion can be sufficient to dislodge a surface atom from a weakly bound position on the sample lattice and cause its relocation on the surface in a more strongly bound position (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCracken GM (1975) Rep Prog Phys 38(2):241–372

    Article  Google Scholar 

  2. Rutherford E (1911) The scattering of α and β particles by matter and the structure of the atom. Philosophical Magazine 21(6):669–688

    Article  Google Scholar 

  3. Dearnaley G (1969) Ion bombardement and implantatio. Rep Prog Phys 32(4):405–492

    Article  Google Scholar 

  4. MacDonald RJ (1970) The ejection of atomic particles from ion bombarded solids. Adv Phys 19(80):457–524

    Article  Google Scholar 

  5. Biersack JP, Ziegler JF (1982) Nucl Instrum Meth 194:93

    Article  Google Scholar 

  6. Lindhard J, Nielsen V, Scharff M (1968) K Dan Vidensk SelskMatFysMedd 16:10

    Google Scholar 

  7. Ziegler JF, Biersack JP, Littmark U (1985) Stopping power and ranges of ions in matter. In: Ziegler JF (ed) The Stopping and Range of Ions in Solids, vol 1. Pergamon Press, New York

    Google Scholar 

  8. Matsunami N, Yamamura Y, Hikawa Y, Itoh N, Kazumata Y, Miyagawa S, Morita K, Shimizu R, Tawara H (1983) Report IPPJ-Am-32. Insitute of Plasma Physics, Nagoya University,

    Google Scholar 

  9. Fano U (1963) Ann Rev Nucl Sci 13:1

    Article  Google Scholar 

  10. Lindhard J, Scharff M (1961) Phys Rev 124:128

    Article  Google Scholar 

  11. Andersen HH, Ziegler JF (1977) Hydrogen stopping power and ranges in all elements. In: Ziegler JF (ed) The Stopping and Range of Ions in Solids. Series, vol 3. Pergamon Press,

    Google Scholar 

  12. Ziegler JF (1977) Helium, stopping power and ranges in all elements. In: Ziegler JF (ed) The Stopping and Range of Ions in Solids, vol 3. Pergamon Press, New York

    Google Scholar 

  13. Littmark U, Ziegler JF (1980) Range distributions for energetic ions in all elements. In: Ziegler JF (ed) The Stopping and Range of Ions in Solids, vol 6. Pergamon Press, New York

    Google Scholar 

  14. Chu WK, Moruzzi VL, Ziegler JF (1976) JAppl Phys 46:2817

    Article  Google Scholar 

  15. Boutard D, Müller W, Scherzer BMU (1988) Phys Rev B 38:2988

    Article  Google Scholar 

  16. Bauer P, Rössler W, Mertens P (1992) Nucl Instrum Meth B 69:46

    Article  Google Scholar 

  17. Lindhard J, Scharff M, Schiott H (1963) K Dan Vidensk SelskMatFysMedd 33:14

    Google Scholar 

  18. Schiott HE (1966) K Dan Vidensk SelskMatFysMedd 25:9

    Google Scholar 

  19. Merkle, K.L.: In Radiation Damage in Matals, Ed.: N.L. Petersen & S.D. Harkness (Am. Soc. For Metals, Metals Park, Ohio 1976

    Google Scholar 

  20. Lucasson, P.: In: Fundamental Aspects of Radiation Damage, Ed.: Robinson, M.T. & F.W. Young (ERDA Conf-751006-p1, 1975)

    Google Scholar 

  21. Schilling W (1978) J Nucl Mater 72:1

    Article  Google Scholar 

  22. Robinson MT, Oen OS (1982) J Nucl Mater 110:147

    Article  Google Scholar 

  23. Robinson MT (1970) Nuclear Fusion Reactors. British Nuclear Energy Soc., London

    Google Scholar 

  24. Seitz F, Köhler JS (1956) In: Seitz F, Turnbull D (eds) Solid State Physics, vol 2.

    Google Scholar 

  25. Vineyard GH (1976) Rad Eff 29:245

    Article  Google Scholar 

  26. Sigmund P (1974) Appl Phys Lett 25:169

    Article  Google Scholar 

  27. Itho N, Tanimura K (1986) Rad Eff 98:269

    Article  Google Scholar 

  28. Gibbons JF (1968) Ion implantation in semiconcuctors, Part I, Range distribution theory and experiments. Proc IEEE 56(3):295–319

    Article  Google Scholar 

  29. Sigmund P, Gras-Marti A (1981) Nucl Instrum Meth 182/183:25

    Article  Google Scholar 

  30. Desimoni J, Traverse A (1993) Phys Rev B 48:13266

    Article  Google Scholar 

  31. Lam NQ, Wiedersich H (1987) Nucl Instrum Meth B 18:471

    Article  Google Scholar 

  32. Müller KH (1987) Phys Rev B 35:7906

    Article  Google Scholar 

  33. Gilmore CM, Sprague J (1992) J Vac Sci Technol A 10:1597

    Article  Google Scholar 

  34. Choi C-H, Hultman L, Barnett SA (1993) J Vac Sci Technol B 11:1

    Article  Google Scholar 

  35. Kitabatake M, Green JE (1993) J Appl Phys 73:3138

    Article  Google Scholar 

  36. Haberland H, Insepov Z, Karrais M, Mall M, Moseler M (1993) Nucl Instrum Meth B 80/81:1320

    Article  Google Scholar 

  37. Haberland H, Insepov Z, Moseler M (1993) Z Phys D 26:229

    Article  Google Scholar 

  38. Windischman H (1991) J Vac Sci Technol A 9:2341

    Google Scholar 

  39. Robertson J (1993) Diam Rel Mater 2:984

    Article  Google Scholar 

  40. Wilson RG, Brewer GR (1973) Ion Beams: With Applications to Ion Implantations. Wiley & Sons, New York

    Google Scholar 

  41. Valyi L (1978) Atom and Ion Sources. Wiley & Sons, New York

    Google Scholar 

  42. Smullin LD, Haus HA (eds) (1959) Noise in Electron Devices. MIT Press and Wiley & Sons, New York

    Google Scholar 

  43. Loeb LB (1960) Basic Prozesses of Gaseous Electronics. University of California Press, Berkely, California

    Google Scholar 

  44. Langmuir I (1924) Currents limited by space charge between concentric spheres. Phys Rev 24:49

    Article  Google Scholar 

  45. Wilson RG, Brewer GR (1973) Ion Beams with Applications to Ion Implantation. R. E. Krieger Publishing Company, Amsterdam, Oxford, New York, Tokyo

    Google Scholar 

  46. Kaufman HR, Haper JMF, Cuomo JJ (1979) Focused ion beam designs for sputter depositions. J Vac Sci Technol 16:899

    Article  Google Scholar 

  47. Kaufman HR, Robinson RS (1980) Gridded Brod Beam Ion Sources. In: Cuomo JJ, Rossnagel SM, Kaufman HR (eds) Handbook of Ion Beam Processing Technology. Noyes Publications, Park Ridge, New Jersey

    Google Scholar 

  48. Keller F (1983) A High-Bridhtness Duoplasmatron Ion Source. In: Ryssel H, Glawischnig H (eds) Springer Series in Electrophysics. (Eds, vol 11. Springer Verlag, Berlin, p 83

    Google Scholar 

  49. Freeman JH (1973) In: Dearnaley G (ed) Ion Implantation. North Holl. Publ. Comp., Amsterdam, p 292

    Google Scholar 

  50. Baumann H, Bethge K (1981) The Franfurt PIG Ion Source. Nucl Instr and Meth 189:107

    Article  Google Scholar 

  51. Oechsner H (1974) Electron Cyclotron Wave Resonances and Power Adsorption Effects in Electrodeless Low Pressure H.F. Plasmas with a Superimposed Static Magnetic Field. Plasma Physics 16:835

    Article  Google Scholar 

  52. Tahagi T, Ishikawa J (1990) Current status of development of ion sources in Japan from a standpoint of materials science. Rev Sci Instrum 61:517

    Article  Google Scholar 

  53. Mahoney JF, Takiku AY, Daley HL, Moore RD, Perel J (1979) J Appl Phys 40:51001

    Google Scholar 

  54. Hanson GR, Siegel BM (1979) J Vac Sci Technol 16:1875

    Article  Google Scholar 

  55. Swanson, L.W. et al.: Emission characteristics of gallium and bismuth liquid metal field-ion sources. Scanning Electron Microsc. 1979/I, 45–51

    Google Scholar 

  56. Taylor GI (1964) Disintegration of water drops in an electric field. Proc R Soc London A 280:384

    Article  Google Scholar 

  57. Swanson LW, Schwind GA, Bell AE (1979) Emission characteristics of a liquid gallium in source. Scanning Electron Microsc (I):45–51

    Google Scholar 

  58. Powell RA, Downey DF (1984) Dry Etching for Microelectronics. In: Powell RA (ed) Reactive Ion Beam Etching. North Holland Physics Publishing, Amsterdam

    Chapter  Google Scholar 

  59. Anatech LTD, Alexandria VA, USA, Firmenschrift 1990

    Google Scholar 

  60. Kessler J, Tomcik J, Waldorf J, Oechsner H (1991) Plasma beam deposition of diamand like films. Vacuum 42:273

    Article  Google Scholar 

  61. Keller F (1983) A High-Bridhtness Duoplasmatron Ion Source. In: Ryssel H, Glawischnig H (eds) Springer Series in Electrophysics. (Eds, vol 11. Springer Verlag, Berlin, p 83

    Google Scholar 

  62. Jaeger H, Schulze J, Frey H (1990) High-Temperature Superconducting Films Prepared by Low-Pressure RF-Plasma Deposition Conference on the Science and Technology of Thin-Film Superconductors, April 30- May 4, 1990.

    Book  Google Scholar 

  63. Sun SS (1986) Internal stress of ion beam sputtered molybdenium films. J Vac Sci Technol A 4:572

    Article  Google Scholar 

  64. Giannuzzi LA, Stevie FA (2005) Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice. Springer,

    Book  Google Scholar 

  65. Kretschmer KH, Lorenz G, Casttrischer G, Kessler I, Baumann P (1990) LH Electron Cyclotron Resonance ((ECR) Plasma Source SPIE, Advanced Techniques for Integrated Circuit Processing, vol. 1392.

    Google Scholar 

  66. Marshall A, Natarajan S (2002) SOI Design: Analog, Memory and Digital Techniques. Springer,

    Google Scholar 

  67. Williams JS, Poate JM (1984) Ion Implantation an d Beam Processing. Academic Press, New York

    Google Scholar 

  68. Gibbson JF (1968) Ion implantation in semiconductors – Part I: Range distribution theory and experiments. Proc IEEE 56(3):295

    Article  Google Scholar 

  69. Gibbson JF (1972) Ion implantation in semiconductors – Part II: Damage production and annealing. Proc IEEE 60(9):1062

    Article  Google Scholar 

  70. Sansbury J (1976) Applications of ion implantation in semiconductor processing. Solid state Technol 19(11):31

    Google Scholar 

  71. Meindl JD, Saraswqat KC, Dutton RW, Gibbons JF, Tiller W, Plummer JD, Deal BE, Kamins TI (1978) Computer aided engineering of semiconductor integrated circuits, Stanford University Integrated Circuit Laboratory, Report TR 4969-3, SEL-78.011. Stanford University, Stanford, California

    Google Scholar 

  72. Erramli H, Blondiaux G (1995) Ion chanelling. Applied Radiation and Isotopes 46(6–7):413–418

    Article  Google Scholar 

  73. Mayer JW, Rimini E (1977) Ion Beam Handbook for Materials Analysis. Academic Press Inc, New York

    Google Scholar 

  74. Lindhard J, Scharff M, Schioett H (1963) Atomic collisions II. Range concepts and heavy ion ranges. K Dan Vidensk Selsk Mat Fys Medd 33(14):1

    Google Scholar 

  75. Sansbury J (1976) Applications of ion implantation in semiconductor processing. Solid State Technol 19(11):31

    Google Scholar 

  76. Sigmund P, Saunders JB (1967) Spatial distribution of energy deposited by ionic bombardment. In: Proceedings of the International Conference on Applications of Ion Beams to Semiconductor Technology. , Grenoble, France, p 215

    Google Scholar 

  77. Rupprecht HS (1978) New advances in semiconductor implantation. J Vac Sci Technol 15(5):1669

    Article  Google Scholar 

  78. Christel LA, Gibbons JF, Mylroie S (1980) An application of the Boltzmann transport equation to ion range and damage distribution in multi-layered targets. J Appl Phys 51(12):6179

    Article  Google Scholar 

  79. Füßer HJ, Oechsner H (1991) High dose low energy implantation of nitrogen in silicon, niobbium and aluminium. Suf Coat Technol 48:97

    Article  Google Scholar 

  80. Pailthorpe BA, Mahon P (1990) Thin Solid Films 193/194:34

    Article  Google Scholar 

  81. Anders A (2000) Handbook of Plasma Immersion Ion Implantation and Deposition. Wiley, New York

    Google Scholar 

  82. Conrad JR (1989) Plasma Source Ion Implantation: A new Approach to Ion Beam Modification of Materials. Mater Sci Engin A 116:197

    Article  Google Scholar 

  83. Chen A, Sridharan K, Conrad JJ, Fetherston RP (1991) Surface Modification of Ti-6Al-4V Surgial Alloy by Plasma Source Ion Implantation. Surface and Coatings Techn 50:1

    Article  Google Scholar 

  84. Brown, I.G., X. Godechot & K.M. Yu: Plasma Immersion Surface Modification with Metal Ion Plasma. Report LBL-29914, Lawrence Berkely Laboratory, April 1991

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frey, H. (2015). Particle Beam Sources. In: Frey, H., Khan, H.R. (eds) Handbook of Thin-Film Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05430-3_8

Download citation

Publish with us

Policies and ethics