Skip to main content

Brain-Oriented Intensive Care Management

  • Chapter
  • First Online:
Drowning
  • 100 Accesses

Abstract

Treatment in the intensive care unit (ICU) should primarily be directed at the stabilization of vital functions and prevention of secondary brain injury (Fig. 120.1). This section describes the most important aspects of ICU treatment of victims after drowning, with a special emphasis on the effects on the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasibeder WR (2003) Drowning. Curr Opin Anaesthesiol 16:139–145

    Article  PubMed  Google Scholar 

  2. Layon AJ, Modell JH (2009) Drowning: update 2009. Anesthesiology 110:1390–1401

    Article  PubMed  Google Scholar 

  3. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network (2000) N Engl J Med 342:1301–1308

    Google Scholar 

  4. Bowie RA, O’Connor PJ, Hardman JG et al (2001) The effect of continuous positive airway pressure on cerebral blood flow velocity in awake volunteers. Anesth Analg 92:415–417

    Article  CAS  PubMed  Google Scholar 

  5. Haring HP, Hormann C, Schalow S et al (1994) Continuous positive airway pressure breathing increases cerebral blood flow velocity in humans. Anesth Analg 79:883–885

    Article  CAS  PubMed  Google Scholar 

  6. Kolbitsch C, Lorenz IH, Hormann C et al (2000) The impact of increased mean airway pressure on contrast-enhanced MRI measurement of regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), regional mean transit time (rMTT), and regional cerebrovascular resistance (rCVR) in human volunteers. Hum Brain Mapp 11:214–222

    Article  CAS  PubMed  Google Scholar 

  7. Muench E, Bauhuf C, Roth H et al (2005) Effects of positive end-expiratory pressure on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation. Crit Care Med 33:2367–2372

    Article  PubMed  Google Scholar 

  8. Georgiadis D, Schwarz S, Baumgartner RW et al (2001) Influence of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure in patients with acute stroke. Stroke 32:2088–2092

    Article  CAS  PubMed  Google Scholar 

  9. Zhang XY, Yang ZJ, Wang QX et al (2011) Impact of positive end-expiratory pressure on cerebral injury patients with hypoxemia. Am J Emerg Med 29:699–703

    Article  PubMed  Google Scholar 

  10. Andrews PJ (2005) Pressure, flow and Occam’s Razor: a matter of “steal”? Intensive Care Med 31:323–324

    Article  PubMed  Google Scholar 

  11. Mascia L, Grasso S, Fiore T et al (2005) Cerebro-pulmonary interactions during the application of low levels of positive end-expiratory pressure. Intensive Care Med 31:373–379

    Article  PubMed  Google Scholar 

  12. Kilgannon JH, Jones AE, Parrillo JE et al (2011) Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation 123:2717–2722

    Article  CAS  PubMed  Google Scholar 

  13. Bisschops LL, Hoedemaekers CW, Simons KS et al (2010) Preserved metabolic coupling and cerebrovascular reactivity during mild hypothermia after cardiac arrest. Crit Care Med 38:1542–1547

    Article  PubMed  Google Scholar 

  14. Reinprecht A, Greher M, Wolfsberger S et al (2003) Prone position in subarachnoid hemorrhage patients with acute respiratory distress syndrome: effects on cerebral tissue oxygenation and intracranial pressure. Crit Care Med 31:1831–1838

    Article  PubMed  Google Scholar 

  15. Fandel I, Bancalari E (1976) Near-drowning in children: clinical aspects. Pediatrics 58:573–579

    CAS  PubMed  Google Scholar 

  16. Tabeling BB, Modell JH (1983) Fluid administration increases oxygen delivery during continuous positive pressure ventilation after freshwater near-drowning. Crit Care Med 11:693–696

    Article  CAS  PubMed  Google Scholar 

  17. Nussbaum E (1985) Prognostic variables in nearly drowned, comatose children. Am J Dis Child 139:1058–1059

    CAS  PubMed  Google Scholar 

  18. Trzeciak S, Jones AE, Kilgannon JH et al (2009) Significance of arterial hypotension after resuscitation from cardiac arrest. Crit Care Med 37:2895–2903, quiz 2904

    Article  PubMed  Google Scholar 

  19. Wiedemann HP, Wheeler AP, Bernard GR et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575

    Article  CAS  PubMed  Google Scholar 

  20. Nielsen N, Sunde K, Hovdenes J et al (2011) Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med 39:57–64

    Article  PubMed  Google Scholar 

  21. Claassen J, Mayer SA, Kowalski RG et al (2004) Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology 62:1743–1748

    Article  CAS  PubMed  Google Scholar 

  22. Jette N, Claassen J, Emerson RG et al (2006) Frequency and predictors of nonconvulsive seizures during continuous electroencephalographic monitoring in critically ill children. Arch Neurol 63:1750–1755

    Article  PubMed  Google Scholar 

  23. Abend NS, Topjian A, Ichord R et al (2009) Electroencephalographic monitoring during hypothermia after pediatric cardiac arrest. Neurology 72:1931–1940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Janati A, Erba G (1982) Electroencephalographic correlates of near-drowning encephalopathy in children. Electroencephalogr Clin Neurophysiol 53:182–191

    Article  CAS  PubMed  Google Scholar 

  25. Zandbergen EG, Hijdra A, Koelman JH et al (2006) Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology 66:62–68

    Article  CAS  PubMed  Google Scholar 

  26. Wijdicks EF, Hijdra A, Young GB et al (2006) Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 67:203–210

    Article  CAS  PubMed  Google Scholar 

  27. Wijdicks EF, Young GB (1994) Myoclonus status in comatose patients after cardiac arrest. Lancet 343:1642–1643

    Article  CAS  PubMed  Google Scholar 

  28. Rossetti AO, Oddo M, Liaudet L et al (2009) Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology 72:744–749

    Article  PubMed  Google Scholar 

  29. Rossetti AO, Urbano LA, Delodder F et al (2010) Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care 14:R173

    Article  PubMed Central  PubMed  Google Scholar 

  30. Rundgren M, Westhall E, Cronberg T et al (2010) Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med 38:1838–1844

    Article  PubMed  Google Scholar 

  31. Saidel-Odes LR, Almog Y (2003) Near-drowning in the Dead Sea: a retrospective observational analysis of 69 patients. Isr Med Assoc J 5:856–858

    PubMed  Google Scholar 

  32. Thiele RH, Pouratian N, Zuo Z et al (2009) Strict glucose control does not affect mortality after aneurysmal subarachnoid hemorrhage. Anesthesiology 110:603–610

    Article  PubMed  Google Scholar 

  33. Bilotta F, Caramia R, Paoloni FP et al (2009) Safety and efficacy of intensive insulin therapy in critical neurosurgical patients. Anesthesiology 110:611–619

    Article  CAS  PubMed  Google Scholar 

  34. Meierhans R, Bechir M, Ludwig S et al (2010) Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury. Crit Care 14:R13

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Hoedemaekers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoedemaekers, C. (2014). Brain-Oriented Intensive Care Management. In: Bierens, J. (eds) Drowning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04253-9_120

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04253-9_120

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04252-2

  • Online ISBN: 978-3-642-04253-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics