Skip to main content

Prostate Cancer: Role of Conventional Radionuclide and Hybrid Bone Imaging

  • Chapter
  • First Online:
Radionuclide and Hybrid Bone Imaging

Abstract

Bone is the second most common site of metastatic disease after lymph nodes in prostate cancer. This is related to a poor prognosis and is one of the major causes of morbidity and mortality in patients with prostate carcinoma. Early detection of osseous metastases and the definition of its extent, pattern and aggressiveness are crucial for proper staging and restaging; it is particularly important in high-risk primary disease before embarking on radical prostatectomy or radiation therapy.

Different patterns of bone metastases, such as early bone marrow infiltration, osteoblastic, osteolytic and mixed changes, can be seen. These types of metastases differ in their effect on bone, and consequently the choice of imaging modalities that best depict the lesions may vary. Over the last decades, bone scintigraphy has been used routinely in the evaluation of prostate cancer patients. Despite of its acceptable sensitivity, bone scintigraphy has low specificity in differentiation of the malignant versus benign lesions. Single-photon emission tomography (SPECT) increases the sensitivity and specificity of planar bone scanning, especially for the evaluation of the spine. Positron emission tomography (PET) is increasing in popularity for staging newly diagnosed prostate cancer and for assessing response to therapy. Many PET tracers have been examined for the evaluation of prostate cancer patients based on increased glycolysis (F-18 FDG), cell membrane proliferation by radiolabelled phospholipids (C-11 and F-18 choline), fatty acid synthesis (C-11 acetate), amino acid transport and protein synthesis (C-11 methionine), androgen receptor expression (F-18 FDHT) and osteoblastic activity (F-18 fluoride). However, there are presently no accurate imaging modalities to directly, reproducibly and effectively delineate bone metastases in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Acetate:

C-11 acetate

BM:

Bone metastases

BS:

Bone scintigraphy

CIM:

Conventional imaging modalities

CT:

Computed tomography

DHT:

Dihydrotestosterone

FCH:

F-18 methylcholine

FDG:

F-18 fluorodeoxyglucose

Flouride:

F-18 fluoride

HT:

Hormone therapy

HU:

Hounsfield unit

MDP:

Tc-99m methylene diphosphonate

PET:

Positron emission tomography

PSA:

Prostate-specific antigen

PSMA:

Prostate-specific membrane antigen

SPECT:

Single-photon emission computed tomography

SUV:

Standardised uptake value

References

  • Abrahamsson P-A (2004) Pathophysiology of bone metastases in prostate cancer. Eur Urol Suppl 3(5):1–62

    Article  CAS  Google Scholar 

  • Agus DB, Golde DW, Sgouros G, Ballangrud A, Cordon-Cardo C, Scher HI (1998) Positron emission tomography of a human prostate cancer xenograft: association of changes in deoxyglucose accumulation with other measures of outcome following androgen withdrawal. Cancer Res 58(14):3009–3014

    PubMed  CAS  Google Scholar 

  • Alavi A, Kung JW, Zhuang H (2004) Implications of PET based molecular imaging on the current and future practice of medicine. Semin Nucl Med 34(1):56–69

    Article  PubMed  Google Scholar 

  • Albrecht S, Buchegger F, Soloviev D et al (2006) (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34(2): 185–196

    Article  PubMed  Google Scholar 

  • Albrecht S, Buchegger F, Soloviev D et al (2007) (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34(2):185–196

    Article  PubMed  Google Scholar 

  • Apolo AB, Pandit-Taskar N, Morris MJ (2008) Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med 49(12):2031–2041

    Article  PubMed  Google Scholar 

  • Babaian RJ, Sayer J, Podoloff DA, Steelhammer LC, Bhadkamkar VA, Gulfo JV (1994) Radioimmuno­scintigraphy of pelvic lymph nodes with 111indium-labeled monoclonal antibody CYT-356. J Urol 152(6 Pt 1):1952–1955

    PubMed  CAS  Google Scholar 

  • Bander N, Nanus D, Bremer S (2000) Phase I clinical trial targeting a monoclonal antibody (mAb) to the extracellular domain of prostate specific membrane antigen (PSMAext) in hormone-independent patients. J Urol 163(suppl 4):160

    Google Scholar 

  • Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ (2005) Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 23(21):4591–4601

    Article  PubMed  CAS  Google Scholar 

  • Baron A, Migita T, Tang D, Loda M (2004) Fatty acid synthase: a metabolic oncogene in prostate cancer? J Cell Biochem 91(1):47–53

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Alavi A (2008) Unparalleled contribution of 18F-FDG PET to medicine over 3 decades. J Nucl Med 49(10):17N–21N, 37N

    PubMed  Google Scholar 

  • Beheshti M, Haim S, Nader M et al (2006) Assessment of bone metastases in patients with prostate cancer by dual-phase F-18 Fluor Choline PET/CT. Eur J Nucl Med Mol Imaging 33(Suppl 2):208

    Google Scholar 

  • Beheshti M, Vali R, Langsteger W (2007) [18F]fluorocholine PET/CT in the assessment of bone metastases in prostate cancer. Eur J Nucl Med Mol Imaging 34(8):1316–1317; author reply 1318–1319

    Article  PubMed  Google Scholar 

  • Beheshti M, Vali R, Waldenberger P et al (2008) Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 35(10):1766–1774

    Article  PubMed  Google Scholar 

  • Beheshti M, Langsteger W, Fogelman I (2009a) Prostate cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39(6):396–407

    Article  PubMed  Google Scholar 

  • Beheshti M, Vali R, Waldenberger P et al (2009b) The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol 11(6):446–454

    Article  PubMed  Google Scholar 

  • Blake GM, Moore AE, Fogelman I (2009) Quantitative studies of bone using (99m)Tc-methylene diphosphonate skeletal plasma clearance. Semin Nucl Med 39(6):369–379

    Article  PubMed  Google Scholar 

  • Blau M, Nagler W, Bender MA (1962) Fluorine-18: a new isotope for bone scanning. J Nucl Med 3:332–334

    PubMed  CAS  Google Scholar 

  • Bombardieri E, Aktolun C, Baum RP et al (2003) FDG-PET: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 30(12):BP115–BP124

    PubMed  Google Scholar 

  • Bonasera TA, O’Neil JP, Xu M et al (1996) Preclinical evaluation of fluorine-18-labeled androgen receptor ligands in baboons. J Nucl Med 37(6):1009–1015

    PubMed  CAS  Google Scholar 

  • Bouchelouche K, Choyke PL, Capala J (2010) Prostate specific membrane antigen – a target for imaging and therapy with radionuclides. Discov Med 9(44):55–61

    PubMed  Google Scholar 

  • Breeuwsma AJ, Pruim J, Jongen MM et al (2005) In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging 32(6):668–673

    Article  PubMed  Google Scholar 

  • Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB (1999) Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 59(13):3192–3198

    PubMed  CAS  Google Scholar 

  • Chen X, Park R, Hou Y et al (2004) MicroPET and autoradiographic imaging of GRP receptor expression with 64Cu-DOTA-[Lys3]bombesin in human prostate adenocarcinoma xenografts. J Nucl Med 45(8):1390–1397

    PubMed  CAS  Google Scholar 

  • Cher ML, Bianco FJ Jr, Lam JS et al (1998) Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. J Urol 160(4):1387–1391

    Article  PubMed  CAS  Google Scholar 

  • Choe YS, Katzenellenbogen JA (1995) Synthesis of C-6 fluoroandrogens: evaluation of ligands for tumor receptor imaging. Steroids 60(5):414–422

    Article  PubMed  CAS  Google Scholar 

  • Choueiri MB, Tu SM, Yu-Lee LY, Lin SH (2006) The central role of osteoblasts in the metastasis of prostate cancer. Cancer Metastasis Rev 25(4):601–609

    Article  PubMed  Google Scholar 

  • Chybowski FM, Keller JJ, Bergstralh EJ, Oesterling JE (1991) Predicting radionuclide bone scan findings in patients with newly diagnosed, untreated prostate cancer: prostate specific antigen is superior to all other clinical parameters. J Urol 145(2):313–318

    PubMed  CAS  Google Scholar 

  • Cimitan M, Bortolus R, Morassut S et al (2006) [(18)F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 33(12):1387–1398

    Article  PubMed  Google Scholar 

  • Coleman RE (1997) Skeletal complications of malignancy. Cancer 80(8 Suppl):1588–1594

    Article  PubMed  CAS  Google Scholar 

  • Cook GJ, Fogelman I (2000) The role of positron emission tomography in the management of bone metastases. Cancer 88(12 Suppl):2927–2933

    Article  PubMed  CAS  Google Scholar 

  • Cook GJ, Fogelman I (2001) The role of nuclear medicine in monitoring treatment in skeletal malignancy. Semin Nucl Med 31(3):206–211

    Article  PubMed  CAS  Google Scholar 

  • Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16(10):3375–3379

    PubMed  CAS  Google Scholar 

  • Costello LC, Franklin RB (1997) Citrate metabolism of normal and malignant prostate epithelial cells. Urology 50(1):3–12

    Article  PubMed  CAS  Google Scholar 

  • D’Amico AV, Whittington R, Schnall M et al (1995) The impact of the inclusion of endorectal coil magnetic resonance imaging in a multivariate analysis to predict clinically unsuspected extraprostatic cancer. Cancer 75(9):2368–2372

    Article  PubMed  Google Scholar 

  • D’Amico AV, Whittington R, Malkowicz SB et al (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280(11):969–974

    Article  PubMed  Google Scholar 

  • de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ (2003) Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 44(3):331–335

    PubMed  Google Scholar 

  • DeGrado TR, Coleman RE, Wang S et al (2001) Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61(1):110–117

    PubMed  CAS  Google Scholar 

  • Dehdashti F, Picus J, Michalski JM et al (2005) Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging 32(3):344–350

    Article  PubMed  Google Scholar 

  • Dotan ZA (2008) Bone imaging in prostate cancer. Nat Clin Pract Urol 5(8):434–444

    Article  PubMed  Google Scholar 

  • Dotan ZA, Bianco FJ Jr, Rabbani F et al (2005) Pattern of prostate-specific antigen (PSA) failure dictates the probability of a positive bone scan in patients with an increasing PSA after radical prostatectomy. J Clin Oncol 23(9):1962–1968

    Article  PubMed  Google Scholar 

  • Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G (1996) Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol 155(3):994–998

    Article  PubMed  CAS  Google Scholar 

  • Effert P, Beniers AJ, Tamimi Y, Handt S, Jakse G (2004) Expression of glucose transporter 1 (Glut-1) in cell lines and clinical specimens from human prostate adenocarcinoma. Anticancer Res 24(5A):3057–3063

    PubMed  CAS  Google Scholar 

  • Elsasser-Beile U, Reischl G, Wiehr S et al (2009) PET imaging of prostate cancer xenografts with a highly specific antibody against the prostate-specific membrane antigen. J Nucl Med 50(4):606–611

    Article  PubMed  CAS  Google Scholar 

  • Epstein JI, Carmichael M, Partin AW (1995) OA-519 (fatty acid synthase) as an independent predictor of pathologic state in adenocarcinoma of the prostate. Urology 45(1):81–86

    Article  PubMed  CAS  Google Scholar 

  • Espey DK, Wu XC, Swan J et al (2007) Annual report to the nation on the status of cancer, 1975–2004, featuring cancer in American Indians and Alaska Natives. Cancer 110(10):2119–2152

    Article  PubMed  Google Scholar 

  • Even-Sapir E, Martin RH, Barnes DC, Pringle CR, Iles SE, Mitchell MJ (1993) Role of SPECT in differentiating malignant from benign lesions in the lower thoracic and lumbar vertebrae. Radiology 187(1):193–198

    PubMed  CAS  Google Scholar 

  • Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47(2):287–297

    PubMed  Google Scholar 

  • Farwell WR, Linder JA, Jha AK (2007) Trends in prostate-specific antigen testing from 1995 through 2004. Arch Intern Med 167(22):2497–2502

    Article  PubMed  CAS  Google Scholar 

  • Fogelman I (1982) Diphosphonate bone scanning agents – current concepts. Eur J Nucl Med 7(11):506–509

    Article  PubMed  CAS  Google Scholar 

  • Fogelman I, Cook G, Israel O, Van der Wall H (2005) Positron emission tomography and bone metastases. Semin Nucl Med 35(2):135–142

    Article  PubMed  Google Scholar 

  • Fowler JE Jr, Sanders J, Bigler SA, Rigdon J, Kilambi NK, Land SA (2000) Percent free prostate-specific antigen and cancer detection in black and white men with total prostate-specific antigen 2.5 to 9.9 ng/ml. J Urol 163(5):1467–1470

    Article  PubMed  Google Scholar 

  • Fricke E, Machtens S, Hofmann M et al (2003) Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging 30(4):607–611

    Article  PubMed  CAS  Google Scholar 

  • Galsky MD, Eisenberger M, Moore-Cooper S et al (2008) Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J Clin Oncol 26(13):2147–2154

    Article  PubMed  CAS  Google Scholar 

  • Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2(9):683–693

    Article  PubMed  CAS  Google Scholar 

  • Gambhir SS, Shepherd JE, Shah BD et al (1998) Analytical decision model for the cost-effective management of solitary pulmonary nodules. J Clin Oncol 16(6):2113–2125

    PubMed  CAS  Google Scholar 

  • Gates GF (1998) SPECT bone scanning of the spine. Semin Nucl Med 28(1):78–94

    Article  PubMed  CAS  Google Scholar 

  • Gillies RJ, Robey I, Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49(Suppl 2):24S–42S

    Article  PubMed  CAS  Google Scholar 

  • Gnanasegaran G, Barwick T, Adamson K, Mohan H, Sharp D, Fogelman I (2009) Multislice SPECT/CT in benign and malignant bone disease: when the ordinary turns into the extraordinary. Semin Nucl Med 39(6):431–442

    Article  PubMed  Google Scholar 

  • Goya M, Ishii G, Miyamoto S et al (2006) Prostate-specific antigen induces apoptosis of osteoclast precursors: potential role in osteoblastic bone metastases of prostate cancer. Prostate 66(15):1573–1584

    Article  PubMed  CAS  Google Scholar 

  • Han LJ, Au-Yong TK, Tong WC, Chu KS, Szeto LT, Wong CP (1998) Comparison of bone single-photon emission tomography and planar imaging in the detection of vertebral metastases in patients with back pain. Eur J Nucl Med 25(6):635–638

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Kosaka N, Shinoura N, Kondo T (1997) PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med 38(6):842–847

    PubMed  CAS  Google Scholar 

  • Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39(6):990–995

    PubMed  CAS  Google Scholar 

  • Hara T, Inagaki K, Kosaka N, Morita T (2000) Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J Nucl Med 41(9):1507–1513

    PubMed  CAS  Google Scholar 

  • Hara T, Bansal A, DeGrado TR (2006) Effect of hypoxia on the uptake of [methyl-3H]choline, [1–14C] acetate and [18F]FDG in cultured prostate cancer cells. Nucl Med Biol 33(8):977–984

    Article  PubMed  CAS  Google Scholar 

  • Haseman MK, Reed NL, Rosenthal SA (1996) Monoclonal antibody imaging of occult prostate cancer in patients with elevated prostate-specific antigen. Positron emission tomography and biopsy correlation. Clin Nucl Med 21(9):704–713

    Article  PubMed  CAS  Google Scholar 

  • Hawkins RA, Choi Y, Huang SC et al (1992) Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med 33(5):633–642

    PubMed  CAS  Google Scholar 

  • Helyar V, Mohan HK, Barwick T et al (2010) The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging 37(4):706–713

    Article  PubMed  Google Scholar 

  • Hetzel M, Hetzel J, Arslandemir C, Nussle K, Schirrmeister H (2004) Reliability of symptoms to determine use of bone scans to identify bone metastases in lung cancer: prospective study. BMJ 328(7447):1051–1052

    Article  PubMed  Google Scholar 

  • Hinkle GH, Burgers JK, Neal CE et al (1998) Multicenter radioimmunoscintigraphic evaluation of patients with prostate carcinoma using indium-111 capromab pendetide. Cancer 83(4):739–747

    Article  PubMed  CAS  Google Scholar 

  • Horger M, Bares R (2006) The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease. Semin Nucl Med 36(4):286–294

    Article  PubMed  Google Scholar 

  • Horger M, Eschmann SM, Pfannenberg C et al (2004) Evaluation of combined transmission and emission tomography for classification of skeletal lesions. AJR Am J Roentgenol 183(3):655–661

    PubMed  Google Scholar 

  • Horiuchi-Suzuki K, Saji H, Ohta H (2004a) Reply. Eur J Nucl Med Mol Imaging 31(12):1675–1676

    Article  Google Scholar 

  • Horiuchi-Suzuki K, Konno A, Ueda M et al (2004) Skeletal affinity of Tc(V)-DMS is bone cell mediated and pH dependent. Eur J Nucl Med Mol Imaging 31(3):388–398

    Article  PubMed  Google Scholar 

  • Husarik DB, Miralbell R, Dubs M et al (2008) Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35(2):253–263

    Article  PubMed  Google Scholar 

  • Imbriaco M, Larson SM, Yeung HW et al (1998) A new parameter for measuring metastatic bone involvement by prostate cancer: the Bone Scan Index. Clin Cancer Res 4(7):1765–1772

    PubMed  CAS  Google Scholar 

  • Ishiwata K, Ido T, Vaalburg W (1988) Increased amounts of D-enantiomer dependent on alkaline concentration in the synthesis of l-[methyl-11C]methionine. Int J Rad Appl Instrum A 39(4):311–314

    Article  PubMed  CAS  Google Scholar 

  • Jacobson AF, Fogelman I (1998) Bone scanning in clinical oncology: does it have a future? Eur J Nucl Med 25(9):1219–1223

    Article  PubMed  CAS  Google Scholar 

  • Jacobson A, Fogelman I, Rosenthall L (1996) Bone scanning in metastatic disease. In: Collier BD (ed) Skeletal nuclear medicine. Mosby, St. Louis, pp 87–123

    Google Scholar 

  • Jadvar H (2009) FDG PET in prostate cancer. PET Clin 4(2):155–161

    Article  PubMed  Google Scholar 

  • Jadvar H, Pinski JK, Conti PS (2003) FDG PET in suspected recurrent and metastatic prostate cancer. Oncol Rep 10(5):1485–1488

    PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1):43–66

    Article  PubMed  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  • Kalkner KM, Ginman C, Nilsson S et al (1997) Positron emission tomography (PET) with 11C-5-hydroxytryptophan (5-HTP) in patients with metastatic hormone-refractory prostatic adenocarcinoma. Nucl Med Biol 24(4):319–325

    Article  PubMed  CAS  Google Scholar 

  • Kane CJ, Amling CL, Johnstone PA et al (2003) Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology 61(3):607–611

    Article  PubMed  Google Scholar 

  • Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT (1998) A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst 90(10):766–771

    Article  PubMed  CAS  Google Scholar 

  • Knowles LM, Yang C, Osterman A, Smith JW (2008) Inhibition of fatty-acid synthase induces caspase-8-mediated tumor cell apoptosis by up-regulating DDIT4. J Biol Chem 283(46):31378–31384

    Article  PubMed  CAS  Google Scholar 

  • Kobori O, Kirihara Y, Kosaka N, Hara T (1999) Positron emission tomography of esophageal carcinoma using (11)C-choline and (18)F-fluorodeoxyglucose: a novel method of preoperative lymph node staging. Cancer 86(9):1638–1648

    Article  PubMed  CAS  Google Scholar 

  • Koizumi M, Matsumoto S, Takahashi S, Yamashita T, Ogata E (1999) Bone metabolic markers in the evaluation of bone scan flare phenomenon in bone metastases of breast cancer. Clin Nucl Med 24(1):15–20

    Article  PubMed  CAS  Google Scholar 

  • Kosuda S, Kaji T, Yokoyama H et al (1996) Does bone SPECT actually have lower sensitivity for detecting vertebral metastasis than MRI? J Nucl Med 37(6):975–978

    PubMed  CAS  Google Scholar 

  • Kotzerke J, Volkmer BG, Neumaier B, Gschwend JE, Hautmann RE, Reske SN (2002) Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 29(10):1380–1384

    Article  PubMed  CAS  Google Scholar 

  • Krasnow AZ, Hellman RS, Timins ME, Collier BD, Anderson T, Isitman AT (1997) Diagnostic bone scanning in oncology. Semin Nucl Med 27(2):107–141

    Article  PubMed  CAS  Google Scholar 

  • Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN (2006) Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 47(2):262–269

    PubMed  Google Scholar 

  • Lam AS, Kettle AG, O’Doherty MJ, Coakley AJ, Barrington SF, Blower PJ (1997) Pentavalent 99Tcm-DMSA imaging in patients with bone metastases. Nucl Med Commun 18(10):907–914

    Article  PubMed  CAS  Google Scholar 

  • Langsteger W, Heinisch M, Fogelman I (2006a) The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36(1):73–92

    Article  PubMed  Google Scholar 

  • Langsteger W, Beheshti M, Nader M et al (2006b) Evaluation of lymph node and bone metastases with Fluor Choline (FCH) PET–CT in the follow up of prostate cancer patients. Eur J Nucl Med Mol Imaging 33(Suppl 2):209

    Google Scholar 

  • Langsteger W, Beheshti M, Loidl W et al (2006c) Fluor Choline (FCH) PET-CT in preoperative staging of prostate cancer. Eur J Nucl Med Mol Imaging 33(Suppl 2):207–208

    Google Scholar 

  • Langsteger W, Beheshti M, Pöcher S et al (2006d) Fluor Choline (FCH) PET-CT in preoperative staging and follow up of prostate cancer. Mol Imaging Biol 8:69

    Google Scholar 

  • Langsteger W, Balogova S, Huchet V et al (2011) Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging 55(4):448–457

    PubMed  CAS  Google Scholar 

  • Lapi SE, Wahnishe H, Pham D et al (2009) Assessment of an 18F-labeled phosphoramidate peptidomimetic as a new prostate-specific membrane antigen-targeted imaging agent for prostate cancer. J Nucl Med 50(12):2042–2048

    Article  PubMed  CAS  Google Scholar 

  • Larson SM, Morris M, Gunther I et al (2004) Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45(3):366–373

    PubMed  CAS  Google Scholar 

  • Lee CT, Oesterling JE (1997) Using prostate-specific antigen to eliminate the staging radionuclide bone scan. Urol Clin North Am 24(2):389–394

    Article  PubMed  CAS  Google Scholar 

  • Lehr JE, Pienta KJ (1998) Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst 90(2):118–123

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Leung WT, Ho SK et al (1995) Quantitative evaluation of thallium-201 uptake in predicting chemotherapeutic response of osteosarcoma. Eur J Nucl Med 22(6):553–555

    Article  PubMed  CAS  Google Scholar 

  • Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ (2003) Radionuclide bone imaging: an illustrative review. Radiographics 23(2):341–358

    Article  PubMed  Google Scholar 

  • Lund F, Smith P, Suciu S (1984) Do bone scans predict prognosis in prostatic cancer? A report of the EORTC protocol 30762. Br J Urol 56(1):58–63

    Article  PubMed  CAS  Google Scholar 

  • Macapinlac HA, Humm JL, Akhurst T et al (1999) Differential metabolism and pharmacokinetics of l-[1-(11)C]-methionine and 2-[(18)F] fluoro-2-deoxy-d-glucose (FDG) in androgen independent prostate cancer. Clin Positron Imaging 2(3):173–181

    Article  PubMed  Google Scholar 

  • Matthies A, Ezziddin S, Ulrich EM et al (2004) Imaging of prostate cancer metastases with 18F-fluoroacetate using PET/CT. Eur J Nucl Med Mol Imaging 31(5):797

    Article  PubMed  Google Scholar 

  • McNab JA, Yung AC, Kozlowski P (2004) Tissue oxygen tension measurements in the Shionogi model of prostate cancer using 19F MRS and MRI. MAGMA 17(3–6):288–295

    Article  PubMed  CAS  Google Scholar 

  • Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ, Bander NH (2004) Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol 22(13):2522–2531

    Article  PubMed  CAS  Google Scholar 

  • Minn H, Clavo AC, Wahl RL (1996) Influence of hypoxia on tracer accumulation in squamous-cell carcinoma: in vitro evaluation for PET imaging. Nucl Med Biol 23(8):941–946

    Article  PubMed  CAS  Google Scholar 

  • Minoves M (2003) Bone and joint sports injuries: the role of bone scintigraphy. Nucl Med Commun 24(1):3–10

    Article  PubMed  Google Scholar 

  • Miyazawa H, Arai T, Iio M, Hara T (1993) PET imaging of non-small-cell lung carcinoma with carbon-11-methionine: relationship between radioactivity uptake and flow-cytometric parameters. J Nucl Med 34(11):1886–1891

    PubMed  CAS  Google Scholar 

  • Morris MJ, Akhurst T, Osman I et al (2002) Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 59(6):913–918

    Article  PubMed  Google Scholar 

  • Morris MJ, Divgi CR, Pandit-Taskar N et al (2005a) Pilot trial of unlabeled and indium-111-labeled anti-prostate-specific membrane antigen antibody J591 for castrate metastatic prostate cancer. Clin Cancer Res 11(20):7454–7461

    Article  PubMed  CAS  Google Scholar 

  • Morris MJ, Akhurst T, Larson SM et al (2005b) Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res 11(9):3210–3216

    Article  PubMed  CAS  Google Scholar 

  • National Institute for Clinical Excellence (2002) Improving outcomes in urological cancers. National Institute for Clinical Excellence, London

    Google Scholar 

  • Nilsson S, Kalner K, Ginman C (1995) C-11 methionine positron emission tomography in the management of prostate carcinoma. Antibody Immunoconj Radiopharm 8:23–38

    Google Scholar 

  • Noguchi M, Kikuchi H, Ishibashi M, Noda S (2003) Percentage of the positive area of bone metastasis is an independent predictor of disease death in advanced prostate cancer. Br J Cancer 88(2):195–201

    Article  PubMed  CAS  Google Scholar 

  • Nunez R, Macapinlac HA, Yeung HW et al (2002) Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43(1):46–55

    PubMed  Google Scholar 

  • O’Mara RE (1976) Skeletal scanning in neoplastic disease. Cancer 37(1 suppl):480–486

    Article  PubMed  Google Scholar 

  • Oesterling JE, Martin SK, Bergstralh EJ, Lowe FC (1993) The use of prostate-specific antigen in staging patients with newly diagnosed prostate cancer. JAMA 269(1):57–60

    Article  PubMed  CAS  Google Scholar 

  • Oyama N, Akino H, Kanamaru H et al (2002a) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43(2):181–186

    PubMed  CAS  Google Scholar 

  • Oyama N, Akino H, Suzuki Y et al (2002b) Prognostic value of 2-deoxy-2-[F-18]fluoro-d-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol 4(1):99–104

    Article  PubMed  Google Scholar 

  • Oyama N, Miller TR, Dehdashti F et al (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44(4):549–555

    PubMed  CAS  Google Scholar 

  • Palayoor ST, Tofilon PJ, Coleman CN (2003) Ibuprofen-mediated reduction of hypoxia-inducible factors HIF-1alpha and HIF-2alpha in prostate cancer cells. Clin Cancer Res 9(8):3150–3157

    PubMed  CAS  Google Scholar 

  • Petren-Mallmin M, Andreasson I, Ljunggren O et al (1998) Skeletal metastases from breast cancer: uptake of 18F-fluoride measured with positron emission tomography in correlation with CT. Skeletal Radiol 27(2):72–76

    Article  PubMed  CAS  Google Scholar 

  • Phelps ME (2000) PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41(4):661–681

    PubMed  CAS  Google Scholar 

  • Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49(Suppl 2):43S–63S

    Article  PubMed  CAS  Google Scholar 

  • Polascik TJ, Manyak MJ, Haseman MK et al (1999) Comparison of clinical staging algorithms and 111indium-capromab pendetide immunoscintigraphy in the prediction of lymph node involvement in high risk prostate carcinoma patients. Cancer 85(7):1586–1592

    Article  PubMed  CAS  Google Scholar 

  • Ponde DE, Dence CS, Oyama N et al (2007) 18F-fluoroacetate: a potential acetate analog for prostate tumor imaging – in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med 48(3):420–428

    PubMed  CAS  Google Scholar 

  • Rasey JS, Koh WJ, Evans ML et al (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36(2):417–428

    Article  PubMed  CAS  Google Scholar 

  • Reske SN, Blumstein NM, Glatting G (2006a) PET and PET/CT in relapsing prostate carcinoma. Urologe A 45(10):1240, 1242–1244, 1246–1248, 1250

    Article  PubMed  CAS  Google Scholar 

  • Reske SN, Blumstein NM, Neumaier B et al (2006b) Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 47(8):1249–1254

    PubMed  CAS  Google Scholar 

  • Rigaud J, Tiguert R, Le Normand L et al (2002) Prognostic value of bone scan in patients with metastatic prostate cancer treated initially with androgen deprivation therapy. J Urol 168(4 Pt 1):1423–1426

    PubMed  Google Scholar 

  • Rogers BE, Bigott HM, McCarthy DW et al (2003) MicroPET imaging of a gastrin-releasing peptide receptor-positive tumor in a mouse model of human prostate cancer using a 64Cu-labeled bombesin analogue. Bioconjug Chem 14(4):756–763

    Article  PubMed  CAS  Google Scholar 

  • Roivainen A, Forsback S, Gronroos T et al (2000) Blood metabolism of [methyl-11C]choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med 27(1):25–32

    Article  PubMed  CAS  Google Scholar 

  • Roland J, van den Weyngaert D, Krug B, Brans B, Scalliet P, Vandevivere J (1995) Metastases seen on SPECT imaging despite a normal planar bone scan. Clin Nucl Med 20(12):1052–1054

    Article  PubMed  CAS  Google Scholar 

  • Romer W, Nomayr A, Uder M, Bautz W, Kuwert T (2006) SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med 47(7):1102–1106

    PubMed  Google Scholar 

  • Rosenthal DI (1997) Radiologic diagnosis of bone metastases. Cancer 80(8 Suppl):1595–1607

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Grzeskowiak M, Della Bianca V, Sbarbati A (1991) De novo synthesis of diacylglycerol from glucose. A new pathway of signal transduction in human neutrophils stimulated during phagocytosis of beta-glucan particles. J Biol Chem 266(13):8034–8038

    PubMed  CAS  Google Scholar 

  • Ryan PJ, Evans PA, Gibson T, Fogelman I (1992) Chronic low back pain: comparison of bone SPECT with radiography and CT. Radiology 182(3):849–854

    PubMed  CAS  Google Scholar 

  • Sabbatini P, Larson SM, Kremer A et al (1999) Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol 17(3):948–957

    PubMed  CAS  Google Scholar 

  • Salminen E, Hogg A, Binns D, Frydenberg M, Hicks R (2002) Investigations with FDG-PET scanning in prostate cancer show limited value for clinical practice. Acta Oncol 41(5):425–429

    Article  PubMed  Google Scholar 

  • Salvatore M, Carratu L, Porta E (1976) Thallium-201 as a positive indicator for lung neoplasms: preliminary experiments. Radiology 121(2):487–488

    PubMed  CAS  Google Scholar 

  • Sandblom G, Sorensen J, Lundin N, Haggman M, Malmstrom PU (2006) Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology 67(5):996–1000

    Article  PubMed  Google Scholar 

  • Sanz G, Rioja J, Zudaire JJ, Berian JM, Richter JA (2004) PET and prostate cancer. World J Urol 22(5):351–352

    Article  PubMed  CAS  Google Scholar 

  • Sarikaya I, Sarikaya A, Holder LE (2001) The role of single photon emission computed tomography in bone imaging. Semin Nucl Med 31(1):3–16

    Article  PubMed  CAS  Google Scholar 

  • Savelli G, Chiti A, Grasselli G, Maccauro M, Rodari M, Bombardieri E (2000) The role of bone SPET study in diagnosis of single vertebral metastases. Anticancer Res 20(2B):1115–1120

    PubMed  CAS  Google Scholar 

  • Savelli G, Maffioli L, Maccauro M, De Deckere E, Bombardieri E (2001) Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med 45(1):27–37

    PubMed  CAS  Google Scholar 

  • Scher HI, Sawyers CL (2005) Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 23(32):8253–8261

    Article  PubMed  CAS  Google Scholar 

  • Schirrmeister H, Guhlmann A, Elsner K et al (1999a) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40(10):1623–1629

    PubMed  CAS  Google Scholar 

  • Schirrmeister H, Guhlmann A, Kotzerke J et al (1999b) Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 17(8):2381–2389

    PubMed  CAS  Google Scholar 

  • Schirrmeister H, Arslandemir C, Glatting G et al (2004) Omission of bone scanning according to staging guidelines leads to futile therapy in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 31(7):964–968

    Article  PubMed  Google Scholar 

  • Schmid DT, John H, Zweifel R et al (2005) Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 235(2):623–628

    Article  PubMed  Google Scholar 

  • Schuhmacher J, Zhang H, Doll J et al (2005) GRP receptor-targeted PET of a rat pancreas carcinoma xenograft in nude mice with a 68Ga-labeled bombesin(6–14) analog. J Nucl Med 46(4):691–699

    PubMed  CAS  Google Scholar 

  • Schuster DM, Votaw JR, Nieh PT et al (2007) Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 48(1):56–63

    PubMed  CAS  Google Scholar 

  • Scott LJ, Clarke NW, George NJ, Shanks JH, Testa NG, Lang SH (2001) Interactions of human prostatic epithelial cells with bone marrow endothelium: binding and invasion. Br J Cancer 84(10):1417–1423

    Article  PubMed  CAS  Google Scholar 

  • Sedonja I, Budihna NV (1999) The benefit of SPECT when added to planar scintigraphy in patients with bone metastases in the spine. Clin Nucl Med 24(6):407–413

    Article  PubMed  CAS  Google Scholar 

  • Seltzer MA, Barbaric Z, Belldegrun A et al (1999) Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol 162(4):1322–1328

    Article  PubMed  CAS  Google Scholar 

  • Seo Y, Franc BL, Hawkins RA, Wong KH, Hasegawa BH (2006) Progress in SPECT/CT imaging of prostate cancer. Technol Cancer Res Treat 5(4):329–336

    PubMed  Google Scholar 

  • Shreve PD, Gross MD (1997) Imaging of the pancreas and related diseases with PET carbon-11-acetate. J Nucl Med 38(8):1305–1310

    PubMed  CAS  Google Scholar 

  • Shreve P, Chiao PC, Humes HD, Schwaiger M, Gross MD (1995) Carbon-11-acetate PET imaging in renal disease. J Nucl Med 36(9):1595–1601

    PubMed  CAS  Google Scholar 

  • Shreve PD, Grossman HB, Gross MD, Wahl RL (1996) Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-d-glucose. Radiology 199(3):751–756

    PubMed  CAS  Google Scholar 

  • Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3(1):81–85

    PubMed  CAS  Google Scholar 

  • Singh G, Lakkis CL, Laucirica R, Epner DE (1999) Regulation of prostate cancer cell division by glucose. J Cell Physiol 180(3):431–438

    Article  PubMed  CAS  Google Scholar 

  • Skov K, Adomat H, Bowden M et al (2004) Hypoxia in the androgen-dependent Shionogi model for prostate cancer at three stages. Radiat Res 162(5):547–553

    Article  PubMed  CAS  Google Scholar 

  • Song X, Segars WP, Du Y, Tsui BM, Frey EC (2005) Fast modelling of the collimator–detector response in Monte Carlo simulation of SPECT imaging using the angular response function. Phys Med Biol 50(8):1791–1804

    Article  PubMed  CAS  Google Scholar 

  • Steinborn MM, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF (1999) Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23(1):123–129

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Sloan A, Mangner TJ et al (2005) Imaging DNA synthesis with [18F]FMAU and positron emission tomography in patients with cancer. Eur J Nucl Med Mol Imaging 32(1):15–22

    Article  PubMed  CAS  Google Scholar 

  • Sweat SD, Pacelli A, Murphy GP, Bostwick DG (1998) Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 52(4):637–640

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Inoue T, Lee J, Yamaguchi T, Shizukuishi K (2007) The roles of PET and PET/CT in the diagnosis and management of prostate cancer. Oncology 72(3–4):226–233

    Article  PubMed  Google Scholar 

  • Tehrani OS, Muzik O, Heilbrun LK et al (2007) Tumor imaging using 1-(2′-deoxy-2′-18F-fluoro-beta-d-arabinofuranosyl)thymine and PET. J Nucl Med 48(9):1436–1441

    Article  PubMed  CAS  Google Scholar 

  • Texter JH Jr, Neal CE (1998) The role of monoclonal antibody in the management of prostate adenocarcinoma. J Urol 160(6 Pt 2):2393–2395

    PubMed  Google Scholar 

  • Toth G, Lengyel Z, Balkay L, Salah MA, Tron L, Toth C (2005) Detection of prostate cancer with 11C-methionine positron emission tomography. J Urol 173(1):66–69; discussion 69

    Article  PubMed  Google Scholar 

  • Troyer J, Beckett M, Wright G (1997) Location of prostate-specific membrane antigen in the LNCaP prostate carcinoma cell line. Prostate 30:232

    Article  PubMed  CAS  Google Scholar 

  • Uematsu T, Yuen S, Yukisawa S et al (2005) Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. AJR Am J Roentgenol 184(4):1266–1273

    PubMed  Google Scholar 

  • Valk PE, Pounds TR, Tesar RD, Hopkins DM, Haseman MK (1996) Cost-effectiveness of PET imaging in clinical oncology. Nucl Med Biol 23(6):737–743

    Article  PubMed  CAS  Google Scholar 

  • Vavere AL, Lewis JS (2008) Examining the relationship between Cu-ATSM hypoxia selectivity and fatty acid synthase expression in human prostate cancer cell lines. Nucl Med Biol 35(3):273–279

    Article  PubMed  CAS  Google Scholar 

  • Vees H, Buchegger F, Albrecht S et al (2007) 18F-choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/mL) after radical prostatectomy. BJU Int 99(6):1415–1420

    Article  PubMed  CAS  Google Scholar 

  • Wachter S, Tomek S, Kurtaran A et al (2006) 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol 24(16):2513–2519

    Article  PubMed  Google Scholar 

  • Weiner RE (1996) The mechanism of 67Ga localization in malignant disease. Nucl Med Biol 23(6):745–751

    Article  PubMed  CAS  Google Scholar 

  • Wright GL Jr, Grob BM, Haley C et al (1996) Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 48(2):326–334

    Article  PubMed  Google Scholar 

  • Wyss MT, Weber B, Honer M et al (2004) 18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging 31(3):312–316

    Article  PubMed  CAS  Google Scholar 

  • Yahara J, Noguchi M, Noda S (2003) Quantitative evaluation of bone metastases in patients with advanced prostate cancer during systemic treatment. BJU Int 92(4):379–383; discussion 383–384

    Article  PubMed  CAS  Google Scholar 

  • Yapp DT, Woo J, Kartono A et al (2007) Non-invasive evaluation of tumour hypoxia in the Shionogi tumour model for prostate cancer with 18F-EF5 and positron emission tomography. BJU Int 99(5):1154–1160

    Article  PubMed  Google Scholar 

  • Yeh SD, Imbriaco M, Larson SM et al (1996) Detection of bony metastases of androgen-independent prostate cancer by PET-FDG. Nucl Med Biol 23(6):693–697

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto M, Waki A, Yonekura Y et al (2001) Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 28(2):117–122

    Article  PubMed  CAS  Google Scholar 

  • Zeisel SH (1981) Dietary choline: biochemistry, physiology, and pharmacology. Annu Rev Nutr 1:95–121

    Article  PubMed  CAS  Google Scholar 

  • Zeisel SH (1993) Choline phospholipids: signal transduction and carcinogenesis. FASEB J 7(6):551–557

    PubMed  CAS  Google Scholar 

  • Zhang X, Cai W, Cao F et al (2006) 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med 47(3):492–501

    PubMed  CAS  Google Scholar 

  • Zheng QH, Gardner TA, Raikwar S et al (2004) [11C]Choline as a PET biomarker for assessment of prostate cancer tumor models. Bioorg Med Chem 12(11):2887–2893

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Beheshti M.D., FEBNM, FASNC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beheshti, M., Langsteger, W. (2012). Prostate Cancer: Role of Conventional Radionuclide and Hybrid Bone Imaging. In: Fogelman, I., Gnanasegaran, G., van der Wall, H. (eds) Radionuclide and Hybrid Bone Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02400-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02400-9_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02399-6

  • Online ISBN: 978-3-642-02400-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics