Skip to main content

Advertisement

Log in

Skeletal affinity of Tc(V)-DMS is bone cell mediated and pH dependent

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

In spite of recent advances in bone cellular and molecular biology, there is still a poor correlation between these parameters and data obtained from bone scintigraphy. Diphosphonate derivatives radiolabelled with technetium-99m (Tc-BPs) have long been recognised as bone-seeking agents with an affinity for areas of active mineralisation. However, during clinical trials with a pH-sensitive tumour agent, the pentavalent technetium complex of dimercaptosuccinic acid [Tc(V)-DMS] showed a noticeable osteotropic character only in bone pathologies (bone metastases, Paget’s diseases) and lacked accumulation in normal mature bone. To decipher the osteotropic character of Tc(V)-DMS, a study at the cellular level was considered necessary. Moreover, to learn more about the role of Tc bone agents, acid-base regulation by bone tissue or cells was studied. First, biological parameters in body fluid were measured under systemic acidosis, induced by glucose administration, in normal and Ehrlich ascites tumour (EAT)-bearing mice. Then, in vivo biodistribution studies using Tc(V)-DMS or a conventional Tc-BP agent were carried out. The effect of glucose-mediated acidification on the skeletal distribution of the Tc agents in the mice provided valuable hints regarding the differential mediation of bone cells in skeletal tissue affinity for the agents. Thereafter, in vitro studies on osteoblast and osteoclast cells were performed and the comparative affinity of Tc(V)-DMS and Tc-BP was screened under diverse acidification conditions. Moreover, studies were also carried out on acid-base parameters related to the cellular uptake mechanism. Very specific pH-sensitive Tc(V)-DMS accumulation only in the osteoclastic system was detected, and use of Tc(V)-DMS in the differential detection of osteoblastic and osteoclastic metastases is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A, B
Fig 3A–D
Fig 4A, B
Fig. 5A, B
Fig. 6
Fig. 7A, B

Similar content being viewed by others

References

  1. Yokoyama A, Hata N, Horuchi K, Masuda H, Saji H, Ohta H, Yamamoto K, Endo K, Torizuka K. The design of a pentavalent99mTc-dimercaptosuccinate complex as a tumor imaging agent. Int J Nucl Med Biol 1985; 4:273–279.

    Google Scholar 

  2. Horiuchi K, Saji H, Yokoyama A. Tc(V)-DMS tumor localization mechanism: a pH sensitive Tc(V)-DMS enhanced target/non-target ratio by glucose-mediated acidosis. Nucl Med Biol 1998; 25:549–555.

    Article  Google Scholar 

  3. Hirano T, Otake H, Yoshida I, Endo K. Primary lung cancer SPECT imaging with pentavalent technetium-99m-DMSA. J Nucl Med 1995; 36:202–207.

    CAS  PubMed  Google Scholar 

  4. Kobayashi H, Sakahara H, Hosono M, Shirato M, Endo K, Kotoura Y, Yamamuro T, Konishi J. Soft-tissue tumors: diagnosis with Tc-99m(V) dimercaptosuccinic acid scintigraphy. Radiology 1994; 190:277–280.

    CAS  PubMed  Google Scholar 

  5. Ohta H, Endo K, Fujita T, Konishi J, Torizuka K, Horiuchi K, Yokoyama A. Clinical evaluation of tumour imaging using99Tc(V)m-dimercaptosuccinic acid, a new tumour seeking agent. Nucl Med Commun 1988; 9:105–116.

    CAS  PubMed  Google Scholar 

  6. Lam ASK, Kettle AG, O’Doherty, Coakley AJ, Barrington SF, Blower PJ. Pentavalent99Tcm-DMSA imaging in patients with bone metastases. Nucl Med Commun 1997; 18:907–914.

    PubMed  Google Scholar 

  7. Kobayashi H, Shigeno C, Sakahara H, Yamamoto T, Hosono M, Fujimoto R, Konishi J. Three phase99Tcm(V)-DMS scintigraphy in Paget’s disease: an indicator of pamindronate effect. Br J Radiol 1997; 70:1056–1059.

    CAS  PubMed  Google Scholar 

  8. Kobayashi H, Horiuchi SK, Sakahara H, Zheng-Sheng Y, Yokoyama A. Oxygen bubbling can improve the labelling of pentavalent-99m dimercaptosuccinic acid. Eur J Nucl Med 1995; 22:559–562.

    CAS  PubMed  Google Scholar 

  9. Jacobson AF, Fogelman I. Bone scanning in clinical oncology: does it have a future ? Eur J Nucl Med 1998; 25:1219–1223.

    CAS  PubMed  Google Scholar 

  10. Itoh K. Bone scintigraphy in metastatic bone disease. Jpn J Nucl Med Biol 2000; 37:1–5.

    CAS  Google Scholar 

  11. Bushinsky DA. Acidosis and bone. Miner Electrolytes Metab 1994; 20:40–52.

    Google Scholar 

  12. Eiam-ong S, Kurtzman NA. Metabolic acidosis and bone disease. Miner Electrolyte Metab 1994; 20:72–80.

    Google Scholar 

  13. Manolagas-SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000; 21:115–137.

    PubMed  Google Scholar 

  14. Ramp WK, Lenz LG, Kaysinger KK. Medium pH modulates matrix, mineral, and energy metabolism in cultured chick bones and osteoblast-like cells. Bone Miner 1994; 24:59–73.

    CAS  PubMed  Google Scholar 

  15. Krieger NS, Sessler NE, Bushinsky DA. Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro. Am J Physiol 1992; 262: F442–F448.

    CAS  PubMed  Google Scholar 

  16. Bushinski DA. Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclast and stimulating osteoblast. Am J Physiol 1996; 271:F216–F222.

    PubMed  Google Scholar 

  17. Horiuchi K, Saji H, Yokoyama A. pH Sensitive properties of Tc(V)-DMS: analytical and in-vitro cellular studies. Nucl Med Biol 1998; 25:549–555.

    Article  PubMed  Google Scholar 

  18. Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 1989; 49:4373–4384.

    PubMed  Google Scholar 

  19. Takahashi N, Akatsu T, Udagawa N, Sasaki T. Osteoblastic cells are involved in osteoclast formation. Endocrinology 1988; 123:2600–2602.

    CAS  PubMed  Google Scholar 

  20. Takahashi N, Yamana H, Yoshiki S, Roodman GD, Mundy GR, Jones SJ, Boyde A, Suda T. Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow culture. Endocrinology 1988; 122:1373–1382.

    Google Scholar 

  21. Akatsu T, Tamura T, Takahashi N, Udagawa N, Tanaka S, Sasaki T, Yamaguchi A, Nagata N, Suda T. Preparation and characterization of a mouse osteoclast-like multinucleated cell population. J Bone Miner Res 1992; 7:1297–1306.

    CAS  PubMed  Google Scholar 

  22. Kakudo S, Miyazawa K, Kameda T, Mano H, Mori Y, Yuasa T, Nakamura Y, Shiokawa M, Nagahira K, Tokunaga S, Hakeda Y, Kumegawa M. Isolation of highly enriched rabbit osteoclast from collagen gels: a new assay system for bone-resorbing activity of mature osteoclast. J Bone Miner Metab 1996; 14:129–136.

    CAS  Google Scholar 

  23. Yomoda I, Horiuchi K, Hata N, Masuda H, Yokoyama A, Ogawa H, Nakazawa N, Ooi T. The development of new tumor imaging99mTc(V)-DMS kit: preparation and labeling conditions studies. Jpn Nucl Med 1987; 24:77–82.

    CAS  Google Scholar 

  24. Nordstrom T, Shrode LD, Rotstein OD, Romanek R, Goto T, Heercshe JNM, Manolson MF, Brisseau GF, Grinstein S. Chronic extracellular acidosis induces plasmalemmal vacuolar type H+ ATPase activity in osteoclast. J Biol Chem 1997; 272:6354–6360.

    Article  PubMed  Google Scholar 

  25. Horiuchi K, Saji H, Yokoyama A. Carrier effect on radiolabeling the polynuclear pentavalent rhenium-186 complex of dimercaptosuccinic acid at alkaline pH:186Re(V)-DMS. Nucl Med Biol 1999; 26:771–779.

    Article  CAS  PubMed  Google Scholar 

  26. Burstone MS. Histochemical demonstration of acid phosphatase with naphthol AS-phosphates. J Natl Cancer Inst. 1958; 21:523–539.

  27. Burstone MS. Post-coupling, non-coupling and fluorescence techniques for the demonstration of alkaline phosphatase. J Natl Cancer Inst 1960; 24:1199–1205.

    CAS  PubMed  Google Scholar 

  28. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature 2001; 411:375–379.

    Article  CAS  PubMed  Google Scholar 

  29. Francis MD, Fogelman I.99mTc-diphosphonate uptake mechanism on bone. In: Fogelman I, ed. Bone scanning in clinical practice. London Berlin Heidelberg: Springer; 1986:7–17.

  30. Eagle H. The effect of environment pH on the growth of normal malignant cells. J Cell Physiol 1973; 82:1–8.

    CAS  PubMed  Google Scholar 

  31. Terada M, Inaba M, Yano Y, Hasuma T, Nishizawa Y, Morii H, Otani S. Growth-inhibitory effect of a high glucose concentration on osteoblastic-like cells. Bone 1998; 22:17–23.

    Article  CAS  PubMed  Google Scholar 

  32. Dodds RA, Gowen M, Bradbeer J. Microcytophotometric analysis of human osteoclast metabolism: lack of activity in certain oxidative pathways indicates inability to sustain biosynthesis during resorption. J Histochem Cytochem 1994; 42:599–606.

    CAS  PubMed  Google Scholar 

  33. Williams JP, Blair HC, McDonald JM, McKenna MA, Jordan SE, Williford J, Hardy RW. Regulaton of osteoclastic bone resorption by glucose. Biochem Biophys Res Commun 1997; 235:646–651.

    Article  CAS  PubMed  Google Scholar 

  34. Koobs DH. Phosphate mediation of the Crabtree and Pasteur effects. Science 1972; 178:127–133.

    CAS  PubMed  Google Scholar 

  35. Arnett TR, Spowage M. Modulation of the resorptive activity of rat osteoclasts by small changes in extracellular pH near the physiological range. Bone 1996; 18:277–279.

    Article  CAS  PubMed  Google Scholar 

  36. Lehenkari PP, Laitala-Leinonen T, Linna TJ, Vaananen HK. The regulation of pHi in osteoclasts is dependent on the culture substrate and on the stage of the resorption cycle. Biochem Biophys Res Commun 1997; 235:838–844.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to Drs. M. Kumegawa and Y. Hakeda from the Department of Oral Anatomy and Periontology, Mekai University School of Dentistry, Sakado, without whose help the studies on bone cells would not have been possible. We also wish to thank Nihon Mediphysics Co. Ltd, Chiba, Japan and Daichi Radioisotopes Laboratories Ltd, Chiba, Japan for providing the Tc radiopharmaceuticals. Dr. Satoshi Fukuda, from the National Institute of Radiological Sciences, Anagawa, Chiba-city, Japan, is thanked for his great help and constant support and for discussion on bone-related research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuko Horiuchi-Suzuki.

Additional information

Ueda Mayumi has sadly died since the completion of this article. Requiescat in pace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horiuchi-Suzuki, K., Konno, A., Ueda, M. et al. Skeletal affinity of Tc(V)-DMS is bone cell mediated and pH dependent. Eur J Nucl Med Mol Imaging 31, 388–398 (2004). https://doi.org/10.1007/s00259-003-1364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1364-1

Keywords

Navigation