Skip to main content

Basic and Practically Useful Respiratory Monitoring of a Mechanically Ventilated Patient in Resource-Limited Countries

  • Chapter
  • First Online:
Pediatric and Neonatal Mechanical Ventilation
  • 4946 Accesses

Abstract

The development of intensive care has seen a proliferation of devices for patient monitoring. An underlying assumption has been that improved monitoring can only result in improved patient care. In fact increasing complexity of the intensive care environment, increased presentation of data, and the presence of multiple alarm system may lead to deterioration in the quality of care as staff are overwhelmed by the complexity and volume of information (Frey and Argent 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams AB, Cakar N, Marini JJ (2001) Static and dynamic pressure-volume curves reflect different aspects of respiratory system mechanics in experimental acute respiratory distress syndrome. Respir Care 46:686–693

    CAS  PubMed  Google Scholar 

  • Albaiceta GM, Blanch L, Lucangelo U (2008) Static pressure-volume curves of the respiratory system: were they just a passing fad? Curr Opin Crit Care 14:80–86

    Article  PubMed  Google Scholar 

  • Albuali WH, Singh RN, Fraser DD et al (2007) Have changes in ventilation practice improved outcome in children with acute lung injury? Pediatr Crit Care Med 8:324–330

    Article  PubMed  Google Scholar 

  • Al-Majed SI, Thompson JE, Watson KF, Randolph AG (2004) Effect of lung compliance and endotracheal tube leakage on measurement of tidal volume. Crit Care 8:R398–R402

    Article  PubMed Central  PubMed  Google Scholar 

  • Amato MB, Barbas CS, Medeiros DM et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152:1835–1846

    Article  CAS  PubMed  Google Scholar 

  • Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  CAS  PubMed  Google Scholar 

  • Bhat YR, Abhishek N (2008) Mainstream end-tidal carbon dioxide monitoring in ventilated neonates. Singapore Med J 49:199–203

    CAS  PubMed  Google Scholar 

  • Bhende MS (2001) End-tidal carbon dioxide monitoring in pediatrics – clinical applications. J Postgrad Med 47:215–218

    CAS  PubMed  Google Scholar 

  • Brochard L, Roudot-Thoraval F, Roupie E et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Brooks LJ, DiFiore JM, Martin RJ (1997) Assessment of tidal volume over time in preterm infants using respiratory inductance plethysmography, The CHIME Study Group. Collaborative Home Infant Monitoring Evaluation. Pediatr Pulmonol 23:429–433

    Article  CAS  PubMed  Google Scholar 

  • Cannon ML, Cornell J, Tripp-Hamel DS et al (2000) Tidal volumes for ventilated infants should be determined with a pneumotachometer placed at the endotracheal tube. Am J Respir Crit Care Med 162:2109–2112

    Article  CAS  PubMed  Google Scholar 

  • Caples SM, Hubmayr RD (2003) Respiratory monitoring tools in the intensive care unit. Curr Opin Crit Care 9:230–235

    Article  PubMed  Google Scholar 

  • Castle RA, Dunne CJ, Mok Q, Wade AM, Stocks J (2002) Accuracy of displayed values of tidal volume in the pediatric intensive care unit. Crit Care Med 30:2566–2574

    Article  PubMed  Google Scholar 

  • Chakravarti S, Srivastava S, Mittnacht AJ (2008) Near infrared spectroscopy (NIRS) in children. Semin Cardiothorac Vasc Anesth 12:70–79

    Article  PubMed  Google Scholar 

  • Choi G, Wolthuis EK, Bresser P et al (2006) Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology 105:689–695

    Article  PubMed  Google Scholar 

  • Chow LC, Vanderhal A, Raber J, Sola A (2002) Are tidal volume measurements in neonatal pressure-controlled ventilation accurate? Pediatr Pulmonol 34:196–202

    Article  PubMed  Google Scholar 

  • Cretikos MA, Bellomo R, Hillman K, Chen J, Finfer S, Flabouris A (2008) Respiratory rate: the neglected vital sign. Med J Aust 188:657–659

    PubMed  Google Scholar 

  • DeBoer S, Seaver M (2004) End-tidal CO2 verification of endotracheal tube placement in neonates. Neonatal Netw 23:29–38

    Article  PubMed  Google Scholar 

  • Dela Cruz RH, Banner MJ, Weldon BC (2005) Intratracheal pressure: a more accurate reflection of pulmonary airway pressure in pediatric patients with respiratory failure. Pediatr Crit Care Med 6:175–181

    Article  PubMed  Google Scholar 

  • Duke T, Wandi F, Jonathan M et al (2008) Improved oxygen systems for childhood pneumonia: a multihospital effectiveness study in Papua New Guinea. Lancet 372:1328–1333

    Article  PubMed  Google Scholar 

  • Duke T, Subhi R, Peel D, Frey B (2009) Pulse oximetry: technology to reduce child mortality in developing countries. Ann Trop Paediatr 29:165–175

    Article  CAS  PubMed  Google Scholar 

  • Erasmus PD (2004) The use of end-tidal carbon dioxide monitoring to confirm endotracheal tube placement in adult and paediatric intensive care units in Australia and New Zealand. Anaesth Intensive Care 32:672–675

    CAS  PubMed  Google Scholar 

  • Ferguson ND, Frutos-Vivar F, Esteban A et al (2005) Airway pressures, tidal volumes, and mortality in patients with acute respiratory distress syndrome. Crit Care Med 33:21–30

    Article  PubMed  Google Scholar 

  • Frerichs I, Schiffmann H, Hahn G, Hellige G (2001) Non-invasive radiation-free monitoring of regional lung ventilation in critically ill infants. Intensive Care Med 27:1385–1394

    Article  CAS  PubMed  Google Scholar 

  • Frey B, Argent A (2004) Safe paediatric intensive care. Part 1: does more medical care lead to improved outcome? Intensive Care Med 30:1041–1046

    Article  PubMed  Google Scholar 

  • Fujita Y, Imanaka H, Fujino Y et al (2006) Effect of humidifying devices on the measurement of tidal volume by mechanical ventilators. J Anesth 20:166–172

    Article  PubMed  Google Scholar 

  • Geven WB, Nagler E, de Boo T, Lemmens W (1987) Combined transcutaneous oxygen, carbon dioxide tensions and end-expired CO2 levels in severely ill newborns. Adv Exp Med Biol 220:115–120

    CAS  PubMed  Google Scholar 

  • Greer KJ, Bowen WA, Krauss AN (2003) End-tidal CO2 as a function of tidal volume in mechanically ventilated infants. Am J Perinatol 20:447–451

    Article  PubMed  Google Scholar 

  • Hand IL, Shepard EK, Krauss AN, Auld PA (1989) Discrepancies between transcutaneous and end-tidal carbon dioxide monitoring in the critically ill neonate with respiratory distress syndrome. Crit Care Med 17:556–559

    Article  CAS  PubMed  Google Scholar 

  • Hanson JH, Flori H (2006) Application of the acute respiratory distress syndrome network low-tidal volume strategy to pediatric acute lung injury. Respir Care Clin N Am 12:349–357

    PubMed  Google Scholar 

  • Heinrich S, Schiffmann H, Frerichs A, Klockgether-Radke A, Frerichs I (2006) Body and head position effects on regional lung ventilation in infants: an electrical impedance tomography study. Intensive Care Med 32:1392–1398

    Article  PubMed  Google Scholar 

  • Hejlesen OK, Cichosz SL, Vangsgaard S, Andresen MF, Madsen LP (2009) Clinical implications of a quality assessment of transcutaneous CO2 monitoring in preterm infants in neonatal intensive care. Stud Health Technol Inform 150:490–494

    PubMed  Google Scholar 

  • Herber-Jonat S, von Bismarck P, Freitag-Wolf S, Nikischin W (2008) Limitation of measurements of expiratory tidal volume and expiratory compliance under conditions of endotracheal tube leaks. Pediatr Crit Care Med 9:69–75

    Article  PubMed  Google Scholar 

  • Heulitt MJ, Holt SJ, Thurman TL, Hall RA, Jo CH, Simpson P (2005) Reliability of measured tidal volume in mechanically ventilated young pigs with normal lungs. Intensive Care Med 31:1255–1261

    Article  PubMed  Google Scholar 

  • Heulitt MJ, Thurman TL, Holt SJ, Jo CH, Simpson P (2009) Reliability of displayed tidal volume in infants and children during dual-controlled ventilation. Pediatr Crit Care Med 10:661–667

    Article  PubMed  Google Scholar 

  • Island ER, Church JA, Shaul DB (2001) Short-term complications of central line placement in children with the human immunodeficiency virus. J Pediatr Surg 36:1777–1780

    Article  CAS  PubMed  Google Scholar 

  • Kemper KJ, Benson MS, Bishop MJ (1992) Interobserver variability in assessing pediatric postextubation stridor. Clin Pediatr (Phila) 31:405–408

    Article  CAS  Google Scholar 

  • Khemani RG, Conti D, Alonzo TA, Bart RD 3rd, Newth CJ (2009) Effect of tidal volume in children with acute hypoxemic respiratory failure. Intensive Care Med 35:1428–1437

    Article  PubMed  Google Scholar 

  • Kreit JW, Sciurba FC (1996) The accuracy of pneumotachograph measurements during mechanical ventilation. Am J Respir Crit Care Med 154:913–917

    Article  CAS  PubMed  Google Scholar 

  • Kugelman A, Zeiger-Aginsky D, Bader D, Shoris I, Riskin A (2008) A novel method of distal end-tidal CO2 capnography in intubated infants: comparison with arterial CO2 and with proximal mainstream end-tidal CO2. Pediatrics 122:e1219–e1224

    Article  PubMed  Google Scholar 

  • Lee SW, Hong YS, Han C et al (2009) Concordance of end-tidal carbon dioxide and arterial carbon dioxide in severe traumatic brain injury. J Trauma 67:526–530

    Article  CAS  PubMed  Google Scholar 

  • Liu LL, Gallaher MM, Davis RL, Rutter CM, Lewis TC, Marcuse EK (2004) Use of a respiratory clinical score among different providers. Pediatr Pulmonol 37:243–248

    Article  PubMed  Google Scholar 

  • Main E, Stocks J (2004) The influence of physiotherapy and suction on respiratory deadspace in ventilated children. Intensive Care Med 30:1152–1159

    Article  PubMed  Google Scholar 

  • Main E, Castle R, Stocks J, James I, Hatch D (2001) The influence of endotracheal tube leak on the assessment of respiratory function in ventilated children. Intensive Care Med 27:1788–1797

    Article  CAS  PubMed  Google Scholar 

  • Main E, Castle R, Newham D, Stocks J (2004) Respiratory physiotherapy vs. Suction: the effects on respiratory function in ventilated infants and children. Intensive Care Med 30:1144–1151

    Article  PubMed  Google Scholar 

  • Meade MO, Cook DJ, Guyatt GH et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645

    Article  CAS  PubMed  Google Scholar 

  • Mehta NM, Arnold JH (2004) Mechanical ventilation in children with acute respiratory failure. Curr Opin Crit Care 10:7–12

    Article  PubMed  Google Scholar 

  • Morrow B, Angus L, Greenhough D et al (2010) The reliability of identifying bronchial breathing by auscultation. Int J Ther Rehabil 17:69–74

    Article  Google Scholar 

  • Nasiroglu O, Weldon BC, Berman LS, Haque IU (2006) Ventilator Y-piece pressure compared with intratracheal airway pressure in healthy intubated children. J Clin Monit Comput 20:95–100

    Article  PubMed  Google Scholar 

  • Newth CJ, Rachman B, Patel N, Hammer J (2004) The use of cuffed versus uncuffed endotracheal tubes in pediatric intensive care. J Pediatr 144:333–337

    Article  PubMed  Google Scholar 

  • Nikischin W, Lange M (2003) Correction of compliance and resistance altered by endotracheal tube leaks. Pediatr Crit Care Med 4:344–352

    Article  PubMed  Google Scholar 

  • Nikischin W, Herber-Jonat S, von Bismarck P, Lange M, Grabitz R (2007) Calculation of intratracheal airway pressure in ventilated neonatal piglets with endotracheal tube leaks. Crit Care Med 35:1383–1389

    Article  PubMed  Google Scholar 

  • Pedersen T, Moller AM, Hovhannisyan K (2009) Pulse oximetry for perioperative monitoring. Cochrane Database Syst Rev 4, CD002013

    PubMed  Google Scholar 

  • Pohlman MC, McCallister KE, Schweickert WD et al (2008) Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 36:3019–3023

    Article  PubMed  Google Scholar 

  • Rais-Bahrami K, Rivera O, Mikesell GT, Short BL (2002a) Continuous blood gas monitoring using an in-dwelling optode method: comparison to intermittent arterial blood gas sampling in ECMO patients. J Perinatol 22:472–474

    Article  CAS  PubMed  Google Scholar 

  • Rais-Bahrami K, Rivera O, Mikesell GT, Short BL (2002b) Continuous blood gas monitoring using an in-dwelling optode method: clinical evaluation of the neotrend sensor using a luer stub adaptor to access the umbilical artery catheter. J Perinatol 22:367–369

    Article  CAS  PubMed  Google Scholar 

  • Randolph AG (2009) Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med 37:2448–2454

    Article  PubMed  Google Scholar 

  • Ranucci M, Isgro G, De La Torre T et al (2008) Continuous monitoring of central venous oxygen saturation (Pediasat) in pediatric patients undergoing cardiac surgery: a validation study of a new technology. J Cardiothorac Vasc Anesth 22:847–852

    Article  PubMed  Google Scholar 

  • Rimensberger PC, Pristine G, Mullen BM, Cox PN, Slutsky AS (1999) Lung recruitment during small tidal volume ventilation allows minimal positive end-expiratory pressure without augmenting lung injury. Crit Care Med 27:1940–1945

    Article  CAS  PubMed  Google Scholar 

  • Rohlwink UK, Figaji AA (2010) Methods of monitoring brain oxygenation. Childs Nerv Syst 26:453–464

    Article  PubMed  Google Scholar 

  • Roilides E, Marshall D, Venzon D, Butler K, Husson R, Pizzo PA (1991) Bacterial infections in human immunodeficiency virus type 1-infected children: the impact of central venous catheters and antiretroviral agents. Pediatr Infect Dis J 10:813–819

    Article  CAS  PubMed  Google Scholar 

  • Schultz MJ (2008) Lung-protective mechanical ventilation with lower tidal volumes in patients not suffering from acute lung injury: a review of clinical studies. Med Sci Monit 14:RA22–RA26

    PubMed  Google Scholar 

  • Schwemmer U, Arzet HA, Trautner H, Rauch S, Roewer N, Greim CA (2006) Ultrasound-guided arterial cannulation in infants improves success rate. Eur J Anaesthesiol 23:476–480

    Article  CAS  PubMed  Google Scholar 

  • Sullivan KJ, Kissoon N, Goodwin SR (2005) End-tidal carbon dioxide monitoring in pediatric emergencies. Pediatr Emerg Care 21:327–332, quiz 333–5

    Article  PubMed  Google Scholar 

  • Terragni PP, Rosboch GL, Lisi A, Viale AG, Ranieri VM (2003) How respiratory system mechanics may help in minimising ventilator-induced lung injury in ARDS patients. Eur Respir J Suppl 42:15s–21s

    Article  CAS  PubMed  Google Scholar 

  • Tingay DG, Stewart MJ, Morley CJ (2005) Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport. Arch Dis Child Fetal Neonatal Ed 90:F523–F526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tobias JD (2009) Transcutaneous carbon dioxide monitoring in infants and children. Paediatr Anaesth 19:434–444

    Article  PubMed  Google Scholar 

  • Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network (2000) N Engl J Med 342:1301–1308

    Google Scholar 

  • Warner KJ, Cuschieri J, Garland B et al (2009) The utility of early end-tidal capnography in monitoring ventilation status after severe injury. J Trauma 66:26–31

    Article  PubMed  Google Scholar 

  • Wilson J, Russo P, Russo J, Tobias JD (2005) Noninvasive monitoring of carbon dioxide in infants and children with congenital heart disease: end-tidal versus transcutaneous techniques. J Intensive Care Med 20:291–295

    Article  PubMed  Google Scholar 

  • Wolf GK, Grychtol B, Frerichs I et al (2007) Regional lung volume changes in children with acute respiratory distress syndrome during a derecruitment maneuver. Crit Care Med 35:1972–1978

    Article  PubMed  Google Scholar 

  • Wolthuis EK, Choi G, Dessing MC et al (2008) Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology 108:46–54

    Article  PubMed  Google Scholar 

  • Worly JM, Fortenberry JD, Hansen I, Chambliss CR, Stockwell J (2004) Deep venous thrombosis in children with diabetic ketoacidosis and femoral central venous catheters. Pediatrics 113:e57–e60

    Article  PubMed  Google Scholar 

  • Wyllie J, Carlo WA (2006) The role of carbon dioxide detectors for confirmation of endotracheal tube position. Clin Perinatol 33:111–119, vii

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Argent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Argent, A.C. (2015). Basic and Practically Useful Respiratory Monitoring of a Mechanically Ventilated Patient in Resource-Limited Countries. In: Rimensberger, P. (eds) Pediatric and Neonatal Mechanical Ventilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01219-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01219-8_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01218-1

  • Online ISBN: 978-3-642-01219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics