Skip to main content

Magnetic Resonance Imaging

  • Chapter
  • First Online:
Measurements in Musculoskeletal Radiology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 1558 Accesses

Abstract

In the past, textbooks dedicated to measurements in musculoskeletal imaging have been almost exclusively dedicated to roentgenographic measurements (Keats and Lusted 1985). They focused particularly on static measurements, whereas dynamic and functional aspects were often disregarded. Moreover, quantitative evaluation of soft tissues was not included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 289.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baur A, Reiser MF (2000) Diffusion-weighted imaging of the musculoskeletal system in humans. Skelet Radiol 29:555–562

    Article  CAS  Google Scholar 

  • Baur A, Stäbler A, Brüning R et al (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 207:349–356

    Article  CAS  PubMed  Google Scholar 

  • Baur A, Huber A, Arbogast S et al (2001a) Diffusion-weighted imaging of tumor recurrences and posttherapeutic soft-tissue changes in humans. Eur Radiol 11:828–833

    Article  CAS  PubMed  Google Scholar 

  • Baur A, Huber A, Ertl-Wagner B et al (2001b) Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. Am J Neuroradiol 22:366–372

    CAS  PubMed  Google Scholar 

  • Bergey PD, Zlatkin MB, Dalinka M, Osterman AL, Machek J, Dolinar J (1989) Dynamic MR imaging of the wrist: early results with a specially designed positioning device. Radiology 173:26

    Google Scholar 

  • Bey E, Paranque A, Pharaboz C, Cariou JL (2001) Postoperative monitoring of free fibular grafts by dynamic magnetic resonance imaging. Preliminary results in three cases of mandibular reconstruction. Ann Chir Plast Esthet 46(1):10–17

    Article  CAS  PubMed  Google Scholar 

  • Biffar A, Sourbron S, Dietrich O et al (2010) Combined diffusion-weighted and dynamic contrast-enhanced imaging of patients with acute osteoporotic vertebral fractures. Eur J Radiol 76:298–303. Erratum in: Eur J Radiol 77:528

    Article  PubMed  Google Scholar 

  • Bollow M, Braun J, Hamm B et al (1995) Early sacroiliitis in patients with spondyloarthropathy—evaluation with dynamic gadolinium-enhanced MR-imaging. Radiology 194:529–536

    Article  CAS  PubMed  Google Scholar 

  • Brechtel K, Jacob S, Machann J et al (2000) Acquired generalized lipoatrophy (AGL): highly selective MR lipid imaging and localized (1)H-MRS. J Magn Reson Imaging 12:306–310

    Article  CAS  PubMed  Google Scholar 

  • Brechtel K, Machann J, Pick M, Schaefer JF, Claussen CD, Schick F (2009) Changes in muscular lipids in unilateral isolated hypertrophy of gastrocnemius muscle can be revealed by 1H MR spectroscopy. Korean J Radiol 10:581–586

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan WP, Peterfy C, Fritz RC et al (1994) MR diagnosis of complete tears of the anterior cruciate ligament of the knee: importance of anterior subluxation of the tibia. Am J Roentgenol 162:355–360

    Article  CAS  Google Scholar 

  • Chen WT, Shih TT, Chen RC et al (2002) Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis. J Magn Reson Imaging 15:308–314

    Article  PubMed  Google Scholar 

  • Cicuttini F, Forbes A, Asbeutah A, Moriis K, Stuckey S (2000) Comparison and reproducibility of fast and conventional spoiled gradient-echo magnetic resonance sequences in the determination of knee cartilage volume. J Orthoped Res 18:580–584

    Article  CAS  Google Scholar 

  • Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB (1997) Spatial variation of T2 in human articular cartilage. Radiology 205:546–550

    Article  CAS  PubMed  Google Scholar 

  • De Bisschop E, Luypaert R, Louis O, Osteaux M (1993) Fat fraction of lumbar bone marrow using in vivo proton nuclear magnetic resonance spectroscopy. Bone 14:133–136

    Article  PubMed  Google Scholar 

  • Dietrich O, Biffar A, Reiser MF, Baur-Melnyk A (2009) Diffusion-weighted imaging of bone marrow. Semin Musculoskelet Radiol 13:134–144

    Article  PubMed  Google Scholar 

  • Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    Article  CAS  PubMed  Google Scholar 

  • Eguchi Y, Ohtori S, Yamashita M et al (2011) Diffusion-weighted magnetic resonance imaging of symptomatic nerve root of patients with lumbar disk herniation. Neuroradiology 53:633–641

    Article  PubMed  Google Scholar 

  • Fulmer JM, Harms SE, Flamig DP, Guerdon G, Machek J, Dolinar J (1989) High resolution cine MR imaging of the wrist. Radiology 173:26

    Google Scholar 

  • Gaspersic N, Sersa I, Jevtic V, Tomsic M, Praprotnik S (2008) Monitoring ankylosing spondylitis therapy by dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Skelet Radiol 37:123–131

    Article  Google Scholar 

  • Geirnaerdt MJA, Hogendoorn PCW, Bloem JL, Taminiau AHM, van der Woude HJ (2000) Cartilaginous Tumors: fast contrast-enhanced MR imaging. Radiology 214:539–546

    Article  CAS  PubMed  Google Scholar 

  • Gold GE, Hargreaves BA, Reeder SB, Vasanawala SS, Beaulieu CF (2005) Controversies in protocol selection in the imaging of articular cartilage. Sem Musculoskelet Radiol 9:161–172

    Article  Google Scholar 

  • Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC (1994) Fatty muscle degeneration in cuff ruptures: pre- and postoperative evaluation by CT-scan. Clin Orthop 304:78–83

    Google Scholar 

  • Hollak C, Maas M, Akkerman EM et al (2001) Dixon quantitative chemical shift imaging is a sensitive tool for the evaluation of bone marrow responses to individualized doses of enzyme supplementation therapy in type 1 Gaucher disease. Blood Cells Mol Dis 27:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Horng A, Raya J, Zscharn M et al (2011) Locoregional deformation pattern of the patellar cartilage after different loading typeschigh-resolution 3D-MRI volumetry at 3 T in-vivo. Rofo 183:432–440

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Stewart N, Crabbe J et al (2000) A 1-year follow-up study of dynamic magnetic resonance imaging in early rheumatoid arthritis reveals synovitis to be increased in shared epitope-positive patients and predictive erosions at 1 year. Rheumatology 39:407–416

    Article  CAS  PubMed  Google Scholar 

  • Huysse WCJ, Verstraete KL (2007) Cartilage trauma. In: Vanhoenacker FM, Maas M, Gielen L (eds) Imaging of orthopedic sports injuries. Springer, Berlin, pp 41–60

    Chapter  Google Scholar 

  • Iwasaki H, Kubo H, Harada M, Nishitani H (2010) Temporomandibular joint and 3.0 T pseudodynamic magnetic resonance imaging. Part 1: evaluation of condylar and disc dysfunction. Dentomaxillofac Radiol 39:475–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayakumar P, Nnadi C, Saifuddin A, Macweeney E, Casey A (2006) Dynamic degenerative lumbar spondylolisthesis: diagnosis with axial loaded magnetic resonance imaging. Spine 31:E298–E301

    Article  PubMed  Google Scholar 

  • Jinkins JR, Dworkin J (2003) Proceedings of the State-of-the-Art Symposium on Diagnostic and Interventional Radiology of the Spine, Antwerp, September 7, 2002 (Part two). Upright, weight-bearing, dynamic-kinetic MRI of the spine: pMRI/kMRI. JBR-BTR 86(5):286–293

    PubMed  Google Scholar 

  • Johnson LA, Hoppel BE, Gerard EL et al (1992) Quantitative chemical shift imaging of the vertebral bone marrow in patients with Gaucher disease. Radiology 182:451–455

    Article  CAS  PubMed  Google Scholar 

  • Keats TE, Lusted LB (1985) Atlas of Roentgenographic measurement, 5th edn. Year Book Medical, Chicago

    Google Scholar 

  • Khoo MM, Tyler PA, Saifuddin A, Padhani AR (2011) Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol 40(6):665–681. https://doi.org/10.1007/s00256-011-1106-6

    Article  PubMed  Google Scholar 

  • Konig H, Sieper J, Wolf KJ (1990) Rheumatoid arthritis—evaluation of hypervascular and fibrous pannus with dynamic MR imaging enhanced with Gd-DTPA. Radiology 176:473–477

    Article  CAS  PubMed  Google Scholar 

  • Kugel H, Jung C, Schulte O, Heindel W (2001) Age- and sex-specific differences in the 1H spectrum of vertebral bone marrow. J Magn Reson Imaging 13:263–268

    Article  CAS  PubMed  Google Scholar 

  • Lang P, Honda G, Roberts T et al (1995) Musculoskeletal neoplasm: perineoplastic edema versus tumor on dynamic postcontrast MR images with spatial mapping of instantaneous enhancement rates. Radiology 197:831–839

    Article  CAS  PubMed  Google Scholar 

  • Le Bihan D, Breton LD et al (1986) MR imaging of intravoxel incoherent motions: applications to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Article  PubMed  Google Scholar 

  • Leone A, Cianfoni A, Cerase A, Magarelli N, Bonomo L (2011) Lumbar spondylolysis: a review. Skelet Radiol 40:683–700

    Article  Google Scholar 

  • Li X, Kuo D, Schafer AL, Porzig A, Link TM, Black D, Schwartz AV (2011) Quantification of vertebral bone marrow fat content using 3 tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. J Magn Reson Imaging 33:974–979

    Article  PubMed  PubMed Central  Google Scholar 

  • Maas M, Akkerman EM, Venema HW et al (2001) Dixon quantitative chemical shift MRI for bone marrow evaluation in the lumbar spine: a reproducibility study in healthy volunteers. J Comput Assist Tomogr 25:691–697

    Article  CAS  PubMed  Google Scholar 

  • Maas M, Hollak CE, Akkerman EM, Aerts JM, Stoker J, den Heeten GJ (2002a) Quantification of skeletal involvement in adults with type 1 Gaucher’s disease: fat fraction measured by Dixon quantitative chemical shift imaging as a valid parameter. AJR Am J Roentgenol 179:961–965

    Article  PubMed  Google Scholar 

  • Maas M, Poll LW, Terk MR (2002b) Imaging and quantifying skeletal involvement in Gaucher disease. Br J Radiol 75(Suppl 1):A13–A24

    Article  PubMed  Google Scholar 

  • Maas M, van Kuijk C, Stoker J, Hollak CE, Akkerman EM, Aerts JF, den Heeten GJ (2003) Quantification of bone involvement in Gaucher disease: MR imaging bone marrow burden score as an alternative to Dixon quantitative chemical shift MR imaging—initial experience. Radiology 229(2):554–561

    Article  PubMed  Google Scholar 

  • Maas M, Kuijper M, Akkerman EM (2011) From Gaucher's disease to metabolic radiology: translational radiological research and clinical practice. Semin Musculoskelet Radiol 15:301–306

    Article  PubMed  Google Scholar 

  • Malghem J, Maldague B, Vande Berg B, Lecouvet F (2011) Imagerie de l’appareil musculo-squelettique. Sauramps Médical, Montpellier, 363 pp

    Google Scholar 

  • Malizos KN, Zibis AH, Dailiana Z, Hantes M, Karahalios T, Karantanas AH (2004) MR imaging findings in transient osteoporosis of the hip. Eur J Radiol 50:238–244

    Article  PubMed  Google Scholar 

  • McNally EG, Ostlere SJ, Pal C et al (2000) Assessment of patellar maltracking using combined static and dynamic MRI. Eur Radiol 10:1051–1055

    Article  CAS  PubMed  Google Scholar 

  • Melchert UH, Schröder C, Brossman J, Muhle C (1992) Motion-triggered cine MR imaging of active joint movement. Magn Reson Imaging 10:457–460

    Article  CAS  PubMed  Google Scholar 

  • Miller BL (1991) A review of chemical issues in 1-H NMR spectroscopy: n-acetyl-L-aspartate, creatine and choline. NMR Biomed 4:47–52

    Article  CAS  PubMed  Google Scholar 

  • Miller TT, Staron RB, Feldman F (1996) Patellar height on sagittal MR imaging of the knee. AJR Am J Roentgenol 167:339–341

    Article  CAS  PubMed  Google Scholar 

  • Moritomo H, Murase T, Goto A, Oka K, Sugamoto K, Yoshikawa H (2006) In vivo three-dimensional kinematics of the midcarpal joint of the wrist. J Bone Joint Surg Am 88:611–621

    PubMed  Google Scholar 

  • Mosher TJ, Dardzinski BJ, Smith MB (2000) Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2-preliminary findings at 3 T. Radiology 214:259–266

    Article  CAS  PubMed  Google Scholar 

  • Muhle C, Brossmann J, Heller M (1999) Kinematic CT and MR imaging of the patellofemoral joint. Eur Radiol 9:508–519

    Article  CAS  Google Scholar 

  • Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5:303–324

    Article  CAS  PubMed  Google Scholar 

  • Ostlere S (2007) Imaging of anterior knee pain and maltracking. In: Vanhoenacker FM, Maas M, Gielen L (eds) Imaging of orthopedic sports injuries. Springer, Berlin, pp 307–319

    Chapter  Google Scholar 

  • Patten C, Meyer RA, Fleckenstein JL (2003) T2 mapping of muscle. Semin Musculoskelet Radiol 7:297–305

    Article  PubMed  Google Scholar 

  • Pfirrmann CWA, Schmid MR, Zanetti M, Jost B, Gerber C, Hodler J (2004) Assessment of fat content in supraspinatus muscle with proton MR spectroscopy in asymptomatic volunteers and patients with supraspinatus tendon lesions. Radiology 232:709–715

    Article  PubMed  Google Scholar 

  • Poll LW, Koch J-A, vom Dahl S et al (2001) Magnetic resonance imaging of bone marrow changes in Gaucher disease during enzyme replacement therapy: first German long-term results. Skelet Radiol 30:496–503

    Article  CAS  Google Scholar 

  • Raya JG, Dietrich O, Reiser MF, Bauer-Melnyk A (2005) Techniques for diffusion-weighted imaging of bone marrow. Eur J Radiol 55:64–73

    Article  CAS  PubMed  Google Scholar 

  • Reddick WE, Langston JW, Meyer WH et al (1994) Discrete signal-processing of dynamic contrast-enhanced MR-imaging—statistical validation and preliminary clinical-application. J Magn Reson Imaging 4:397–404

    Article  CAS  PubMed  Google Scholar 

  • Rosen BR, Fleming DM, Kushner DC et al (1988) Hematological bone marrow disorders: quantitative chemical shift MR imaging. Radiology 169:799–804

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal DI, Barton NW, Mckusick KA et al (1992) Quantitative imaging of Gaucher disease. Radiology 185:841–845

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal DI, Doppelt SH, Mankin HJ et al (1995) Enzyme replacement therapy for Gaucher disease: skeletal responses to macrophage-targeted glucocerebroside. Pediatrics 96:629–637

    CAS  PubMed  Google Scholar 

  • Sans N, Richardi G, Railhac JJ et al (1996) Kinematic MR imaging of the shoulder: normal patterns. AJR Am J Roentgenol 167:1517–1522

    Article  CAS  PubMed  Google Scholar 

  • Schaefer O, Winterer J, Lohrmann C, Lauwenberger J, Reichelt A, Langer M (2002) Magnetic resonance imaging for supraspinatus muscle atrophy after cuff repair. Clin Orthop 403:93–99

    Article  Google Scholar 

  • Schellinger D, Lin CS, Fertikh D et al (2000) Normal lumbar vertebrae: anatomic, age, and sex variance in subjects at proton MR spectroscopy-initial experience. Radiology 215:910–916

    Article  CAS  PubMed  Google Scholar 

  • Scheys L, Desloovere K, Spaepen A, Suetens P, Jonkers I (2011) Calculating gait kinematics using MR-based kinematic models. Gait Posture 33:158–164

    Article  PubMed  Google Scholar 

  • Schwarz MS, Swash M, Ingram DA, Graham RD (1988) Patterns of selective involvement of thigh muscles in neuromuscular disease. Muscle Nerve 11:1240

    Article  Google Scholar 

  • Shabshin N, Schweitzer ME, Morrison WB et al (2004) MRI criteria for patella alta and baja. Skelet Radiol 33:445–450

    Article  Google Scholar 

  • Shellock FG (1997) Kinematic magnetic resonance imaging. Sem Musculoskel Radiol 1:143–173

    Article  Google Scholar 

  • Shin CS, Carpenter RD, Majumdar S, Ma CB (2009) Three-dimensional in vivo patellofemoral kinematics and contact area of anterior cruciate ligament-deficient and -reconstructed subjects using magnetic resonance imaging. Arthroscopy 25:1214–1223

    Article  PubMed  Google Scholar 

  • Sugimoto H, Miyaji N, Ohsawa T (1994) Carpal-tunnel syndrome-evaluation of median nerve circulation with dynamic contrast-enhanced MR-imaging. Radiology 190:459–466

    Article  CAS  PubMed  Google Scholar 

  • Szczepaniak LS, Babcock EE, Schick F et al (1999) Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Phys 276:E977–E989

    CAS  Google Scholar 

  • Takasaki H, Hall T, Oshiro S, Kaneko S, Ikemoto Y, Jull G (2011) Normal kinematics of the upper cervical spine during the flexion-rotation test—in vivo measurements using magnetic resonance imaging. Man Ther 16:167–171

    Article  PubMed  Google Scholar 

  • Tang GY, Lv ZW, Tang RB, Liu Y, Peng YF, Li W, Cheng YS (2010) Evaluation of MR spectroscopy and diffusion-weighted MRI in detecting bone marrow changes in postmenopausal women with osteoporosis. Clin Radiol 65(5):377–381. https://doi.org/10.1016/j.crad.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto H, Kang YS, Jones LC et al (1992) Evaluation of marrow perfusion in the femoral head by dynamic magnetic resonance imaging—effect of venous occlusion in a dog model. Investig Radiol 27:275–281

    Article  CAS  Google Scholar 

  • Ulmer JL, Elster AD, Mathews VP, King JC (1994) Distinction between degenerative and isthmic spondylolisthesis on sagittal MR images: the importance of increased anteroposterior diameter of the spinal canal. AJR Am J Roentgenol 163:411–416

    Article  CAS  PubMed  Google Scholar 

  • Van der Woude HJ, Verstraete KL, Hogendoorn PC, Taminiau AH, Hermans J, Bloem JL (1998) Musculoskeletal tumors; does fast dynamic contrast-enhanced subtraction MR imaging contribute to the characterization? Radiology 208:821–828

    Article  PubMed  Google Scholar 

  • Van Rijswijk CS, Kunz P, Hogendoorn PC, Taminiau AH, Doornbos J, Bloem JL (2002) Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging 15:302–307

    Article  PubMed  Google Scholar 

  • Van Rijswijk CSP, Geirnaert MJA, Hogendoorn PCW, Taminiau AHM, van Coevorden F, Zwinderman AH, Pope TL, Bloem JL (2004) Soft-tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology 233:493–502

    Article  PubMed  Google Scholar 

  • Vandevenne J, Pearle A, Lang P, Pauly KB, Bergman G (2010) Clinical feasibility of a magnetic resonance tracking system to guide the position of the scan plane during physiologic joint motion. Radiol Med 115:133–140

    Article  CAS  PubMed  Google Scholar 

  • Vanhoenacker FM, Van der Woude HJ, Vanhoenacker PK, De Praeter G (2007) MR arthrography of the rotator cuff. JBR-BTR 90:338–344

    CAS  PubMed  Google Scholar 

  • Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55:693–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstraete KL, Bloem JL (2006) Dynamic contrast-enhanced magnetic resonance imaging. In: De Schepper AM, Vanhoenacker F, Gielen J, Parizel PM (eds) Imaging of soft tissue tumors, 3rd edn. Spinger, Berlin, pp 73–91

    Chapter  Google Scholar 

  • Verstraete KL, Dedeene Y, Roels H, Dierick A, Uyttendaele D, Kunnen M (1994) Benign and malignant musculoskeletal lesions-dynamic contrast-enhanced MR-imaging-parametric first-pass images depict tissue vascularization and perfusion. Radiology 192:835–843

    Article  CAS  PubMed  Google Scholar 

  • Verstraete KL, Dutoit JC, Drapé JL, Bloem JL (2017) Magnetic resonance imaging: advanced imaging techniques. In: Vanhoenacker FM, Parizel PM, Gielen JL (eds) Imaging of soft tissue tumors, 4th edn. Spinger, Berlin, pp 85–113

    Chapter  Google Scholar 

  • Verstraete KL, Vanzieleghem B, De Deene Y et al (1995) Static, dynamic and first-pass MRI of musculoskeletal lesions using gadodiamide injection. Acta Radiol 36:27–36

    Article  CAS  PubMed  Google Scholar 

  • Vlieger EJ, Maas M, Akkerman EM et al (2002) Vertebra disc ratio as a parameter for bone marrow involvement and its application in Gaucher disease. J Comput Assist Tomogr 26:843–848

    Article  PubMed  Google Scholar 

  • Wang CK, Li CW, Hsieh TJ, Chien SH, Liu GC, Tsai KB (2004) Characterization of bone and soft-tissue tumors with in vivo 1H MR spectroscopy: initial results. Radiology 232:599–605

    Article  PubMed  Google Scholar 

  • Wang CK, Li CW, Hsieh TJ et al (2011) In vivo (1) H MRS for musculoskeletal lesion characterization: which factors affect diagnostic accuracy? NMR Biomed 25:359–368. https://doi.org/10.1002/nbm.1758

    Article  PubMed  Google Scholar 

  • Yeung DK, Wong SY, Griffith JF, Lau EM (2004) Bone marrow diffusion in osteoporosis: evaluation with quantitative MR diffusion imaging. J Magn Reson Imaging 19(2):222–228

    Article  PubMed  Google Scholar 

  • Yeung DKW, Griffith JF, Antonio GE, Lee FKH, Woo J, Leung PC (2005) Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging 22:279–285

    Article  Google Scholar 

  • Zanetti M, Gerber C, Hodler J (1998) Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging. Investig Radiol 33:163–170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip M. Vanhoenacker M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vanhoenacker, F.M., Verstraete, K.L. (2020). Magnetic Resonance Imaging. In: Cassar-Pullicino, V., Davies, A. (eds) Measurements in Musculoskeletal Radiology. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68897-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68897-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43853-3

  • Online ISBN: 978-3-540-68897-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics