Skip to main content

Numerical Simulation of Open Ended Pile Installation in Saturated Sand

  • Conference paper
  • First Online:
Energy Geotechnics (SEG 2018)

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Included in the following conference series:

Abstract

Open-ended pipe piles have been the preferred choice for various foundation applications, and in particularly for offshore wind turbines. The need to know, well in advance, certain design parameters prior to installation thus arises, and through numerical analyses, ranges for these installation parameters, and the behavior of the sand surrounding the pile can be estimated. Offshore environment poses an additional challenge of taking into account not only the penetration process and effects of dynamic loading of the sand, but also the pore pressure built up in the soil skeleton. This paper presents a novel approach to simulate the dynamic installation process of open-ended piles in saturated soil. Thus, the simulation also provides the basis to predict the pile behavior due to axial or lateral loading considering the installation effects. By coupling the aspects of Lagrangian and Eulerian methods, a particle-based method, called Material Point Method (MPM), more specifically its extension called Convected Particle Domain Interpolation (CPDI) method has been employed in the present work. To simulate saturated media, an extension of CPDI is incorporated in the form of 2-phase formulation, different velocities for soil and water are considered and thus able to capture precisely the saturated-soil behavior. A 2-D axisymmetric model is considered, along with a penalty method formulation to calculate contact forces between pile and soil. This method, when applied in conjunction with the hypoplastic constitutive model, provides a framework which allows us to study detailed effects of pile installation on the surrounding soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bardenhagen, S.G., Kober, E.M.: The generalized interpolation material point method. Comput. Model. Eng. Sci. 5(6), 477–496 (2004)

    Google Scholar 

  • Bardenhagen, S.G., Brackbill, J.U., Sulsky, D.: The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 187(3–4), 529–541 (2000)

    Article  Google Scholar 

  • Galavi, V., Beuth, L., Coelho, B.Z., Tehrani, F.S., Hölscher, P., Van Tol, F.: Numerical simulation of pile installation in saturated sand using material point method. Procedia Eng. 175, 72–79 (2017)

    Article  Google Scholar 

  • Hamad, F.: Formulation of the axisymmetric CPDI with application to pile driving in sand. Comput. Geotech. 74, 141–150 (2016)

    Article  Google Scholar 

  • Hamad, F., Giridharan, S., Moormann, C.: A penalty function method for modelling frictional contact in MPM. Procedia Eng. 175, 116–123 (2017)

    Article  Google Scholar 

  • Homel, M.A., Brannon, R.M., Guilkey, J.E.: Simulation of Shaped-Charge Jet Penetration into Drained and Undrained Sandstone Using the Material Point Method with New Approaches for Constitutive Modeling, pp. 676–687. CIMNE, Barcelona (2014)

    Google Scholar 

  • Jassim, I., Stolle, D., Vermeer, P.: Two-phase dynamic analysis by material point method. Int. J. Numer. Anal. Methods Geomech. 37(15), 2502–2522 (2013)

    Article  Google Scholar 

  • Rodger, A.A.: Vibrocompaction of cohensionless soils. Internal report, R.7/79. Cementation Research Limited, Croydon, UK (1979)

    Google Scholar 

  • Sadeghirad, A., Brannon, R.M., Burghardt, J.: A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int. J. Numer. Methods Eng. 86(12), 1435–1456 (2011)

    Article  MathSciNet  Google Scholar 

  • Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)

    Article  MathSciNet  Google Scholar 

  • von Wolffersdorff, P.A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frict. Mater. 1(3), 251–271 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Moormann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moormann, C., Gowda, S., Giridharan, S. (2019). Numerical Simulation of Open Ended Pile Installation in Saturated Sand. In: Ferrari, A., Laloui, L. (eds) Energy Geotechnics. SEG 2018. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-99670-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99670-7_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99669-1

  • Online ISBN: 978-3-319-99670-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics