Skip to main content

Preclinical Animal Models for Developing Vaccines Against Influenza Infection for the Young and the Elderly

  • Reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

Designing efficient vaccines against infectious diseases is a major health challenge. Vaccine development is divided into preclinical and clinical phases. Vaccine candidates (e.g., based on live or inactivated virus, protein, DNA, or RNA) are usually identified and tested in preclinical studies using in vitro and in vivo models before they can be tested in humans. Designing appropriate vaccine formulations encompasses careful selection of the antigen and, where required, an adjuvant or delivery system, as well as the route of application, all of which have a decisive impact on the induced immune responses. Preclinical testing of vaccine candidates also requires suitable animal models in order to investigate not only immunogenicity and safety profiles of the vaccine candidates but ideally also their protective efficacy. For influenza, vaccine capacity to confer cross-protective immunity or to reduce transmission might also need to be evaluated. However, animal models usually do not fully reflect the human situation. Especially problematic is the need to cover different requirements of different target populations, for example, the young and the elderly. While young individuals can rely on their functional immune system, aging is associated with a decline in the normal function of the immune system at both levels, cellular and humoral, leading to a state known as immunosenescence (Haq and Mcelhaney, Curr Opin Immunol 29:38–42, 2014). The present review provides an overview of the use of different animal models in vaccine development and the future perspectives of novel vaccination strategies. It focuses on the advantages, disadvantages, and limitations of the different available animal models with respect to influenza vaccine development for young and aged individuals.

Thomas Ebensen and Kai Schulze contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altenburg AF, Rimmelzwaan GF, De Vries RD (2015) Virus-specific T cells as correlate of (cross-)protective immunity against influenza. Vaccine 33:500–506

    Article  CAS  PubMed  Google Scholar 

  • Asanuma H, Zamri NB, Sekine S, Fukuyama Y, Tokuhara D, Gilbert RS, Fukuiwa T, Fujihashi K, Sata T, Tashiro M, Fujihashi K (2012) A novel combined adjuvant for nasal delivery elicits mucosal immunity to influenza in aging. Vaccine 30:803–812

    Article  CAS  PubMed  Google Scholar 

  • Banner D, Kelvin AA (2012) The current state of H5N1 vaccines and the use of the ferret model for influenza therapeutic and prophylactic development. J Infect Dev Ctries 6:465–469

    CAS  PubMed  Google Scholar 

  • Barnard DL (2009) Animal models for the study of influenza pathogenesis and therapy. Antivir Res 82:A110–A122

    Article  CAS  PubMed  Google Scholar 

  • Belser JA, Tumpey TM (2013) H5N1 pathogenesis studies in mammalian models. Virus Res 178:168–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belser JA, Szretter KJ, Katz JM, Tumpey TM (2009) Use of animal models to understand the pandemic potential of highly pathogenic avian influenza viruses. Adv Virus Res 73:55–97

    Article  CAS  PubMed  Google Scholar 

  • Belser JA, Katz JM, Tumpey TM (2011) The ferret as a model organism to study influenza A virus infection. Dis Model Mech 4:575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer WE, Mcelhaney J, Smith DJ, Monto AS, Nguyen-Van-Tam JS, Osterhaus AD (2013) Cochrane re-arranged: support for policies to vaccinate elderly people against influenza. Vaccine 31:6030–6033

    Article  PubMed  Google Scholar 

  • Birmingham JM, Gillespie VL, Srivastava K, Li XM, Busse PJ (2014) Influenza A infection enhances antigen-induced airway inflammation and hyperresponsiveness in young but not aged mice. Clin Exp Allergy 44:1188–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomberg BB, Frasca D (2013) Age effects on mouse and human B cells. Immunol Res 57:354–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodewes R, Rimmelzwaan GF, Osterhaus AD (2010) Animal models for the preclinical evaluation of candidate influenza vaccines. Expert Rev Vaccines 9:59–72

    Article  PubMed  Google Scholar 

  • Boianelli A, Nguyen VK, Ebensen T, Schulze K, Wilk E, Sharma N, Stegemann-Koniszewski S, Bruder D, Toapanta FR, Guzman CA, Meyer-Hermann M, Hernandez-Vargas EA (2015) Modeling influenza virus infection: a roadmap for influenza research. Virus 7:5274–5304

    Article  CAS  Google Scholar 

  • Borggren M, Nielsen J, Bragstad K, Karlsson I, Krog JS, Williams JA, Fomsgaard A (2015) Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans. Hum Vaccin Immunother 11:1983–1990

    Article  PubMed  PubMed Central  Google Scholar 

  • Borsutzky S, Ebensen T, Link C, Becker PD, Fiorelli V, Cafaro A, Ensoli B, Guzman CA (2006) Efficient systemic and mucosal responses against the HIV-1 Tat protein by prime/boost vaccination using the lipopeptide MALP-2 as adjuvant. Vaccine 24:2049–2056

    Article  CAS  PubMed  Google Scholar 

  • Bouvier NM, Lowen AC (2010) Animal models for influenza virus pathogenesis and transmission. Virus 2:1530–1563

    Article  Google Scholar 

  • Bouvier NM, Lowen AC, Palese P (2008) Oseltamivir-resistant influenza A viruses are transmitted efficiently among guinea pigs by direct contact but not by aerosol. J Virol 82:10052–10058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bragstad K, Vinner L, Hansen MS, Nielsen J, Fomsgaard A (2013) A polyvalent influenza A DNA vaccine induces heterologous immunity and protects pigs against pandemic A(H1N1)pdm09 virus infection. Vaccine 31:2281–2288

    Article  CAS  PubMed  Google Scholar 

  • Brown DM (2010) Cytolytic CD4 cells: direct mediators in infectious disease and malignancy. Cell Immunol 262:89–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busse PJ, Zhang TF, Srivastava K, Schofield B, Li XM (2007) Effect of ageing on pulmonary inflammation, airway hyperresponsiveness and T and B cell responses in antigen-sensitized and -challenged mice. Clin Exp Allergy 37:1392–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll TD, Matzinger SR, Fritts L, Mcchesney MB, Miller CJ (2011) Memory B cells and CD8(+) lymphocytes do not control seasonal influenza A virus replication after homologous re-challenge of rhesus macaques. PLoS One 6:e21756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll TD, Matzinger SR, Barry PA, Mcchesney MB, Fairman J, Miller CJ (2014) Efficacy of influenza vaccination of elderly rhesus macaques is dramatically improved by addition of a cationic lipid/DNA adjuvant. J Infect Dis 209:24–33

    Article  CAS  PubMed  Google Scholar 

  • Carter DM, Darby CA, Lefoley BC, Crevar CJ, Alefantis T, Oomen R, Anderson SF, Strugnell T, Cortes-Garcia G, Vogel TU, Parrington M, Kleanthous H, Ross TM (2016) Design and characterization of a computationally optimized broadly reactive hemagglutinin vaccine for H1N1 influenza viruses. J Virol 90:4720–4734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho A, Wrammert J (2016) Implications of broadly neutralizing antibodies in the development of a universal influenza vaccine. Curr Opin Virol 17:110–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicin-Sain L, Smyk-Pearson S, Currier N, Byrd L, Koudelka C, Robinson T, Swarbrick G, Tackitt S, Legasse A, Fischer M, Nikolich-Zugich D, Park B, Hobbs T, Doane CJ, Mori M, Axthelm MK, Lewinsohn DA, Nikolich-Zugich J (2010) Loss of naive T cells and repertoire constriction predict poor response to vaccination in old primates. J Immunol 184:6739–6745

    Article  CAS  PubMed  Google Scholar 

  • Clegg CH, Roque R, Perrone LA, Rininger JA, Bowen R, Reed SG (2014) GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza. PLoS One 9:e88979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coe CL, Lubach GR, Kinnard J (2012) Immune senescence in old and very old rhesus monkeys: reduced antibody response to influenza vaccination. Age (Dordr) 34:1169–1177

    Article  CAS  Google Scholar 

  • Cox NJ, Subbarao K (1999) Influenza. Lancet 354:1277–1282

    Article  CAS  PubMed  Google Scholar 

  • Crevar CJ, Carter DM, Lee KY, Ross TM (2015) Cocktail of H5N1 COBRA HA vaccines elicit protective antibodies against H5N1 viruses from multiple clades. Hum Vaccin Immunother 11:572–583

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis AS, Taubenberger JK, Bray M (2015) The use of nonhuman primates in research on seasonal, pandemic and avian influenza, 1893–2014. Antivir Res 117:75–98

    Article  CAS  PubMed  Google Scholar 

  • Decman V, Laidlaw BJ, Dimenna LJ, Abdulla S, Mozdzanowska K, Erikson J, Ertl HC, Wherry EJ (2010) Cell-intrinsic defects in the proliferative response of antiviral memory CD8 T cells in aged mice upon secondary infection. J Immunol 184:5151–5159

    Article  CAS  PubMed  Google Scholar 

  • Del Giudice G, Weinberger B, Grubeck-Loebenstein B (2015) Vaccines for the elderly. Gerontology 61:203–210

    Article  PubMed  CAS  Google Scholar 

  • Dey AB, Chaudhury D (1997) Infections in the elderly. Indian J Med Res 106:273–285

    CAS  PubMed  Google Scholar 

  • Didier E, Sugimoto C, Bowers L, Bohm R, Gilbert M, Barnes M, Pattison M, Slisarenko N, Falkenstein K, Kuroda M (2011) Immunologic profile changes associated with aging in rhesus macaques (104.2). J Immunol 186:104.2

    Google Scholar 

  • Dipiazza A, Richards KA, Knowlden ZA, Nayak JL, Sant AJ (2016) The role of CD4 T cell memory in generating protective immunity to novel and potentially pandemic strains of influenza. Front Immunol 7:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doherty PC, Brown LE, Kelso A, Thomas PG (2009) Immunity to avian influenza A viruses. Rev Sci Tech 28:175–185

    Article  CAS  PubMed  Google Scholar 

  • Duan S, Thomas PG (2016) Balancing immune protection and immune pathology by CD8(+) T-cell responses to influenza infection. Front Immunol 7:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebensen T, Link C, Riese P, Schulze K, Morr M, Guzman CA (2007) A pegylated derivative of alpha-galactosylceramide exhibits improved biological properties. J Immunol 179:2065–2073

    Article  CAS  PubMed  Google Scholar 

  • Ebensen T, Libanova R, Schulze K, Yevsa T, Morr M, Guzman CA (2011) Bis-(3′,5′)-cyclic dimeric adenosine monophosphate: strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine 29:5210–5220

    Article  CAS  PubMed  Google Scholar 

  • Enkirch T, Von Messling V (2015) Ferret models of viral pathogenesis. Virology 479–480:259–270

    Article  PubMed  CAS  Google Scholar 

  • Falsey AR, Walsh EE (2005) Respiratory syncytial virus infection in elderly adults. Drugs Aging 22:577–587

    Article  PubMed  PubMed Central  Google Scholar 

  • Frasca D, Blomberg BB (2011) Aging affects human B cell responses. J Clin Immunol 31:430–435

    Article  PubMed  PubMed Central  Google Scholar 

  • Frasca D, Blomberg BB (2014) B cell function and influenza vaccine responses in healthy aging and disease. Curr Opin Immunol 29:112–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frasca D, Blomberg BB (2016) Aging, cytomegalovirus (CMV) and influenza vaccine responses. Hum Vaccin Immunother 12:682–690

    Article  PubMed  Google Scholar 

  • Fujihashi K, Sato S, Kiyono H (2014) Mucosal adjuvants for vaccines to control upper respiratory infections in the elderly. Exp Gerontol 54:21–26

    Article  CAS  PubMed  Google Scholar 

  • Gavin PJ, Thomson RB Jr (2004) Review of rapid diagnostic tests for influenza. Clin Appl Immunol Rev 4:151–172

    Article  Google Scholar 

  • Grant EJ, Quinones-Parra SM, Clemens EB, Kedzierska K (2016) Human influenza viruses and CD8(+) T cell responses. Curr Opin Virol 16:132–142

    Article  CAS  PubMed  Google Scholar 

  • Grubeck-Loebenstein B, Della Bella S, Iorio AM, Michel JP, Pawelec G, Solana R (2009) Immunosenescence and vaccine failure in the elderly. Aging Clin Exp Res 21:201–209

    Article  CAS  PubMed  Google Scholar 

  • Hayden FG (2012) Experimental human influenza: observations from studies of influenza antivirals. Antivir Ther 17:133–141

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Vargas EA, Wilk E, Canini L, Toapanta FR, Binder SC, Uvarovskii A, Ross TM, Guzman CA, Perelson AS, Meyer-Hermann M (2014) Effects of aging on influenza virus infection dynamics. J Virol 88:4123–4131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ho AW, Prabhu N, Betts RJ, Ge MQ, Dai X, Hutchinson PE, Lew FC, Wong KL, Hanson BJ, Macary PA, Kemeny DM (2011) Lung CD103+ dendritic cells efficiently transport influenza virus to the lymph node and load viral antigen onto MHC class I for presentation to CD8 T cells. J Immunol 187:6011–6021

    Article  CAS  PubMed  Google Scholar 

  • Huber VC, Mccullers JA (2006) Live attenuated influenza vaccine is safe and immunogenic in immunocompromised ferrets. J Infect Dis 193:677–684

    Article  CAS  PubMed  Google Scholar 

  • Imai M, Kawaoka Y (2012) The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr Opin Virol 2:160–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Impagliazzo A, Milder F, Kuipers H, Wagner MV, Zhu X, Hoffman RM, Van Meersbergen R, Huizingh J, Wanningen P, Verspuij J, De Man M, Ding Z, Apetri A, Kukrer B, Sneekes-Vriese E, Tomkiewicz D, Laursen NS, Lee PS, Zakrzewska A, Dekking L, Tolboom J, Tettero L, Van Meerten S, Yu W, Koudstaal W, Goudsmit J, Ward AB, Meijberg W, Wilson IA, Radosevic K (2015) A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 349:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Shinya K, Kiso M, Watanabe T, Sakoda Y, Hatta M, Muramoto Y, Tamura D, Sakai-Tagawa Y, Noda T, Sakabe S, Imai M, Hatta Y, Watanabe S, Li C, Yamada S, Fujii K, Murakami S, Imai H, Kakugawa S, Ito M, Takano R, Iwatsuki-Horimoto K, Shimojima M, Horimoto T, Goto H, Takahashi K, Makino A, Ishigaki H, Nakayama M, Okamatsu M, Takahashi K, Warshauer D, Shult PA, Saito R, Suzuki H, Furuta Y, Yamashita M, Mitamura K, Nakano K, Nakamura M, Brockman-Schneider R, Mitamura H, Yamazaki M, Sugaya N, Suresh M, Ozawa M, Neumann G, Gern J, Kida H, Ogasawara K, Kawaoka Y (2009) In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460:1021–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamphuis T, Shafique M, Meijerhof T, Stegmann T, Wilschut J, De Haan A (2013a) Efficacy and safety of an intranasal virosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A in mice and cotton rats. Vaccine 31:2169–2176

    Article  CAS  PubMed  Google Scholar 

  • Kamphuis T, Stegmann T, Meijerhof T, Wilschut J, De Haan A (2013b) A virosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A provides protection against viral challenge without priming for enhanced disease in cotton rats. Influenza Other Respir Viruses 7:1227–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keijzer C, Haijema BJ, Meijerhof T, Voorn P, De Haan A, Leenhouts K, Van Roosmalen ML, Van Eden W, Broere F (2014) Inactivated influenza vaccine adjuvanted with bacterium-like particles induce systemic and mucosal influenza A virus specific T-cell and B-cell responses after nasal administration in a TLR2 dependent fashion. Vaccine 32:2904–2910

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim JK, Song H, Choi J, Shim B, Kang B, Moon H, Yeom M, Kim SH, Song D, Song M (2014) Preliminary study about sublingual administration of bacteria-expressed pandemic H1N1 influenza vaccine in miniature pigs. J Microbiol 52:794–800

    Article  CAS  PubMed  Google Scholar 

  • Kim JR, Holbrook BC, Hayward SL, Blevins LK, Jorgensen MJ, Kock ND, De Paris K, D’agostino RB Jr, Aycock ST, Mizel SB, Parks GD, Alexander-Miller MA (2015) Inclusion of Flagellin during vaccination against influenza enhances recall responses in nonhuman primate neonates. J Virol 89:7291–7303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knothe S, Mutschler V, Rochlitzer S, Winkler C, Ebensen T, Guzman CA, Hohlfeld J, Braun A, Muller M (2011) The NKT cell ligand alphagalactosylceramide suppresses allergic airway inflammation by induction of a Th1 response. Vaccine 29:4249–4255

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi SD, Olsen RJ, Lacasse RA, Safronetz D, Ashraf M, Porter AR, Braughton KR, Feldmann F, Clifton DR, Kash JC, Bailey JR, Gardner DJ, Otto M, Brining DL, Kreiswirth BN, Taubenberger JK, Parnell MJ, Feldmann H, Musser JM, Deleo FR (2013) Seasonal H3N2 influenza A virus fails to enhance Staphylococcus aureus co-infection in a non-human primate respiratory tract infection model. Virulence 4:707–715

    Article  PubMed  PubMed Central  Google Scholar 

  • Korth MJ, Tchitchek N, Benecke AG, Katze MG (2013) Systems approaches to influenza-virus host interactions and the pathogenesis of highly virulent and pandemic viruses. Semin Immunol 25:228–239

    Article  CAS  PubMed  Google Scholar 

  • Kou Z, Wu Q, Kou X, Yin C, Wang H, Zuo Z, Zhuo Y, Chen A, Gao S, Wang X (2015) CRISPR/Cas9-mediated genome engineering of the ferret. Cell Res 25:1372–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuiken T, Van Den Brand J, Van Riel D, Pantin-Jackwood M, Swayne DE (2010) Comparative pathology of select agent influenza A virus infections. Vet Pathol 47:893–914

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Chen K, Kolls JK (2013) Th17 cell based vaccines in mucosal immunity. Curr Opin Immunol 25:373–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre JS, Haynes L (2012) Aging of the CD4 T cell compartment. Open Longev Sci 6:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Bungener L, Ter Veer W, Coller BA, Wilschut J, Huckriede A (2011) Preclinical evaluation of the saponin derivative GPI-0100 as an immunostimulating and dose-sparing adjuvant for pandemic influenza vaccines. Vaccine 29:2037–2043

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Song L, Reiserova L, Trivedi U, Li H, Liu X, Noah D, Hou F, Weaver B, Tussey L (2012) Flagellin-HA vaccines protect ferrets and mice against H5N1 highly pathogenic avian influenza virus (HPAIV) infections. Vaccine 30:6833–6838

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Song L, Beasley DW, Putnak R, Parent J, Misczak J, Li H, Reiserova L, Liu X, Tian H, Liu W, Labonte D, Duan L, Kim Y, Travalent L, Wigington D, Weaver B, Tussey L (2015) Immunogenicity and efficacy of flagellin-envelope fusion dengue vaccines in mice and monkeys. Clin Vaccine Immunol 22:516–525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lofano G, Kumar A, Finco O, Del Giudice G, Bertholet S (2015) B cells and functional antibody responses to combat influenza. Front Immunol 6:336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maher JA, Destefano J (2004) The ferret: an animal model to study influenza virus. Lab Anim (NY) 33:50–53

    Article  Google Scholar 

  • Major D, Chichester JA, Pathirana RD, Guilfoyle K, Shoji Y, Guzman CA, Yusibov V, Cox RJ (2015) Intranasal vaccination with a plant-derived H5 HA vaccine protects mice and ferrets against highly pathogenic avian influenza virus challenge. Hum Vaccin Immunother 11:1235–1243

    PubMed  PubMed Central  Google Scholar 

  • Mann AJ, Noulin N, Catchpole A, Stittelaar KJ, De Waal L, Veldhuis Kroeze EJ, Hinchcliffe M, Smith A, Montomoli E, Piccirella S, Osterhaus AD, Knight A, Oxford JS, Lapini G, Cox R, Lambkin-Williams R (2014) Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge. PLoS One 9:e93761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Margine I, Krammer F (2014) Animal models for influenza viruses: implications for universal vaccine development. Pathogens 3:845–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marriott AC, Dove BK, Whittaker CJ, Bruce C, Ryan KA, Bean TJ, Rayner E, Pearson G, Taylor I, Dowall S, Plank J, Newman E, Barclay WS, Dimmock NJ, Easton AJ, Hallis B, Silman NJ, Carroll MW (2014) Low dose influenza virus challenge in the ferret leads to increased virus shedding and greater sensitivity to oseltamivir. PLoS One 9:e94090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mcelhaney JE (2011) Influenza vaccine responses in older adults. Ageing Res Rev 10:379–388

    Article  CAS  PubMed  Google Scholar 

  • Mcelhaney JE, Kuchel GA, Zhou X, Swain SL, Haynes L (2016) T-cell immunity to influenza in older adults: a pathophysiological framework for development of more effective vaccines. Front Immunol 7:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyake T, Soda K, Itoh Y, Sakoda Y, Ishigaki H, Nagata T, Ishida H, Nakayama M, Ozaki H, Tsuchiya H, Torii R, Kida H, Ogasawara K (2010) Amelioration of pneumonia with Streptococcus pneumoniae infection by inoculation with a vaccine against highly pathogenic avian influenza virus in a non-human primate mixed infection model. J Med Primatol 39:58–70

    Article  CAS  PubMed  Google Scholar 

  • Molinari NA, Ortega-Sanchez IR, Messonnier ML, Thompson WW, Wortley PM, Weintraub E, Bridges CB (2007) The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine 25:5086–5096

    Article  PubMed  Google Scholar 

  • Morens DM, Taubenberger JK, Fauci AS (2008) Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 198:962–970

    Article  PubMed  Google Scholar 

  • Mount AM, Belz GT (2010) Mouse models of viral infection: influenza infection in the lung. Methods Mol Biol 595:299–318

    Article  CAS  PubMed  Google Scholar 

  • Nishino M, Mizuno D, Kimoto T, Shinahara W, Fukuta A, Takei T, Sumida K, Kitamura S, Shiota H, Kido H (2009) Influenza vaccine with Surfacten, a modified pulmonary surfactant, induces systemic and mucosal immune responses without side effects in minipigs. Vaccine 27:5620–5627

    Article  CAS  PubMed  Google Scholar 

  • Oh DY, Hurt AC (2016) Using the ferret as an animal model for investigating influenza antiviral effectiveness. Front Microbiol 7:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Okoye AA, Rohankhedkar M, Konfe AL, Abana CO, Reyes MD, Clock JA, Duell DM, Sylwester AW, Sammader P, Legasse AW, Park BS, Axthelm MK, Nikolich-Zugich J, Picker LJ (2015) Effect of IL-7 therapy on naive and memory T cell homeostasis in aged rhesus macaques. J Immunol 195:4292–4305

    Article  CAS  PubMed  Google Scholar 

  • Paquette SG, Huang SS, Banner D, Xu L, Leomicronn A, Kelvin AA, Kelvin DJ (2014) Impaired heterologous immunity in aged ferrets during sequential influenza A H1N1 infection. Virology 464–465:177–183

    Article  PubMed  CAS  Google Scholar 

  • Parzych EM, Dimenna LJ, Latimer BP, Small JC, Kannan S, Manson B, Lasaro MO, Wherry EJ, Ertl HC (2013) Influenza virus specific CD8(+) T cells exacerbate infection following high dose influenza challenge of aged mice. Biomed Res Int 2013:876314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabakaran M, Velumani S, He F, Karuppannan AK, Geng GY, Yin LK, Kwang J (2008) Protective immunity against influenza H5N1 virus challenge in mice by intranasal co-administration of baculovirus surface-displayed HA and recombinant CTB as an adjuvant. Virology 380:412–420

    Article  CAS  PubMed  Google Scholar 

  • Pulendran B, Oh JZ, Nakaya HI, Ravindran R, Kazmin DA (2013) Immunity to viruses: learning from successful human vaccines. Immunol Rev 255:243–255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajao DS, Vincent AL (2015) Swine as a model for influenza A virus infection and immunity. ILAR J 56:44–52

    Article  CAS  PubMed  Google Scholar 

  • Rappazzo CG, Watkins HC, Guarino CM, Chau A, Lopez JL, Delisa MP, Leifer CA, Whittaker GR, Putnam D (2016) Recombinant M2e outer membrane vesicle vaccines protect against lethal influenza A challenge in BALB/c mice. Vaccine 34:1252–1258

    Article  CAS  PubMed  Google Scholar 

  • Rharbaoui F, Drabner B, Borsutzky S, Winckler U, Morr M, Ensoli B, Muhlradt PF, Guzman CA (2002) The mycoplasma-derived lipopeptide MALP-2 is a potent mucosal adjuvant. Eur J Immunol 32:2857–2865

    Article  CAS  PubMed  Google Scholar 

  • Ricklin ME, Vielle NJ, Python S, Brechbuhl D, Zumkehr B, Posthaus H, Zimmer G, Summerfield A (2016) Partial protection against porcine influenza A virus by a hemagglutinin-expressing virus replicon particle vaccine in the absence of neutralizing antibodies. Front Immunol 7:253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosendahl Huber S, Van Beek J, De Jonge J, Luytjes W, Van Baarle D (2014) T cell responses to viral infections – opportunities for peptide vaccination. Front Immunol 5:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saito T, Lim W, Suzuki T, Suzuki Y, Kida H, Nishimura SI, Tashiro M (2001) Characterization of a human H9N2 influenza virus isolated in Hong Kong. Vaccine 20:125–133

    Article  CAS  PubMed  Google Scholar 

  • Shultz LD, Brehm MA, Bavari S, Greiner DL (2011) Humanized mice as a preclinical tool for infectious disease and biomedical research. Ann N Y Acad Sci 1245:50–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Soema PC, Kompier R, Amorij JP, Kersten GF (2015) Current and next generation influenza vaccines: formulation and production strategies. Eur J Pharm Biopharm 94:251–263

    Article  CAS  PubMed  Google Scholar 

  • Soghoian DZ, Streeck H (2010) Cytolytic CD4(+) T cells in viral immunity. Expert Rev Vaccines 9:1453–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song L, Zhang Y, Yun NE, Poussard AL, Smith JN, Smith JK, Borisevich V, Linde JJ, Zacks MA, Li H, Kavita U, Reiserova L, Liu X, Dumuren K, Balasubramanian B, Weaver B, Parent J, Umlauf S, Liu G, Huleatt J, Tussey L, Paessler S (2009) Superior efficacy of a recombinant flagellin:H5N1 HA globular head vaccine is determined by the placement of the globular head within flagellin. Vaccine 27:5875–5884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speder B (2014) Regulatory requirements for viral-challenge studies: influenza case study. BioPharm Int 27:5

    Google Scholar 

  • Sridhar S (2016) Heterosubtypic T-cell immunity to influenza in humans: challenges for universal T-cell influenza vaccines. Front Immunol 7:195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W, Carman W, Bean T, Barclay W, Deeks JJ, Lalvani A (2013) Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med 19:1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Straight TM, Ottolini MG, Prince GA, Eichelberger MC (2008) Antibody contributes to heterosubtypic protection against influenza A-induced tachypnea in cotton rats. Virol J 5:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taubenberger JK, Morens DM (2008) The pathology of influenza virus infections. Annu Rev Pathol 3:499–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thangavel RR, Bouvier NM (2014) Animal models for influenza virus pathogenesis, transmission, and immunology. J Immunol Methods 410:60–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toapanta FR, Ross TM (2009) Impaired immune responses in the lungs of aged mice following influenza infection. Respir Res 10:112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripp RA, Tompkins SM (2009) Animal models for evaluation of influenza vaccines. Curr Top Microbiol Immunol 333:397–412

    PubMed  Google Scholar 

  • Van Den Brand JM, Kreijtz JH, Bodewes R, Stittelaar KJ, Van Amerongen G, Kuiken T, Simon J, Fouchier RA, Del Giudice G, Rappuoli R, Rimmelzwaan GF, Osterhaus AD (2011) Efficacy of vaccination with different combinations of MF59-adjuvanted and nonadjuvanted seasonal and pandemic influenza vaccines against pandemic H1N1 (2009) influenza virus infection in ferrets. J Virol 85:2851–2858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Der Laan JW, Herberts C, Lambkin-Williams R, Boyers A, Mann AJ, Oxford J (2008) Animal models in influenza vaccine testing. Expert Rev Vaccines 7:783–793

    Article  PubMed  CAS  Google Scholar 

  • Van Riel D, Munster VJ, De Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2007) Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol 171:1215–1223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiersma LC, Vogelzang-Van Trierum SE, Kreijtz JH, Van Amerongen G, Van Run P, Ladwig M, Banneke S, Schaefer H, Fouchier RA, Kuiken T, Osterhaus AD, Rimmelzwaan GF (2015a) Heterosubtypic immunity to H7N9 influenza virus in isogenic guinea pigs after infection with pandemic H1N1 virus. Vaccine 33:6977–6982

    Article  CAS  PubMed  Google Scholar 

  • Wiersma LC, Vogelzang-Van Trierum SE, Van Amerongen G, Van Run P, Nieuwkoop NJ, Ladwig M, Banneke S, Schaefer H, Kuiken T, Fouchier RA, Osterhaus AD, Rimmelzwaan GF (2015b) Pathogenesis of infection with 2009 pandemic H1N1 influenza virus in isogenic guinea pigs after intranasal or intratracheal inoculation. Am J Pathol 185:643–650

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M, Liebner JC, Lambkin-Williams R, Gilbert A, Oxford J, Nicholas B, Staples KJ, Dong T, Douek DC, Mcmichael AJ, Xu XN (2012) Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med 18:274–280

    Article  CAS  PubMed  Google Scholar 

  • Wilson-Welder JH, Torres MP, Kipper MJ, Mallapragada SK, Wannemuehler MJ, Narasimhan B (2009) Vaccine adjuvants: current challenges and future approaches. J Pharm Sci 98:1278–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlbold TJ, Nachbagauer R, Xu H, Tan GS, Hirsh A, Brokstad KA, Cox RJ, Palese P, Krammer F (2015) Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice. MBio 6:e02556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yim K, Miles B, Zinsou R, Prince G, Boukhvalova M (2012) Efficacy of trivalent inactivated influenza vaccines in the cotton rat Sigmodon hispidus model. Vaccine 30:1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Yu CI, Gallegos M, Marches F, Zurawski G, Ramilo O, Garcia-Sastre A, Banchereau J, Palucka AK (2008) Broad influenza-specific CD8+ T-cell responses in humanized mice vaccinated with influenza virus vaccines. Blood 112:3671–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CI, Becker C, Metang P, Marches F, Wang Y, Toshiyuki H, Banchereau J, Merad M, Palucka AK (2014) Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol 193:4335–4343

    Article  CAS  PubMed  Google Scholar 

  • Zitzow LA, Rowe T, Morken T, Shieh WJ, Zaki S, Katz JM (2002) Pathogenesis of avian influenza A (H5N1) viruses in ferrets. J Virol 76:4420–4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported in part by grants from the EU (Univax) and the Helmholtz Association (iMed).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ebensen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ebensen, T., Schulze, K., Prochnow, B., Guzmán, C.A. (2019). Preclinical Animal Models for Developing Vaccines Against Influenza Infection for the Young and the Elderly. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-99375-1_168

Download citation

Publish with us

Policies and ethics