Skip to main content

Feature Extraction and Classification in Brain-Computer Interfacing: Future Research Issues and Challenges

  • Chapter
  • First Online:
Natural Computing for Unsupervised Learning

Part of the book series: Unsupervised and Semi-Supervised Learning ((UNSESUL))

Abstract

Brain-computer interfacing (BCI) is a communication bridge between human brain and computer. BCI system consisted of four sections (signal acquisition, signal processing, feature extraction and classifications, application Interface). In this survey paper, we try to elaborate the entire structure of BCI process especially emphasizing on feature extraction and classification area. We have briefly described different types of brain signals and their properties. For the stationary type of signal, we have used autoregressor and Fourier transform, and for nonstationary signal, we have used wavelet transformation as feature extraction policy. There have been various techniques introduced for EEG signal classification in the literature from low-cost methods (LDA, logistic regression, KNN) to computationally expensive techniques (SVM, artificial neural networks). We have also discussed ensemble and complex classifiers. In this paper, we have explained the basic concepts of all the classifiers and describe their key properties and applications. We have thoroughly analyzed all possible types of comparisons between classifiers using statistical plotting (bar chart, line chart) so that future researchers can identify the suitable classifier for a specific task. Finally, this paper deals with the various open challenges and future research issues with respect to feature extraction and classification in BCI system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulkader SN, Atia A, Mostafa MSM (2015) Brain computer interfacing: applications and challenges. Egyptian Inf J 16(2):213–230

    Article  Google Scholar 

  2. Acharya UR, Sree SV, Alvin APC, Suri JS (2012) Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Exp Syst Appl 39(10):9072–9078

    Article  Google Scholar 

  3. Adair J, Brownlee A, Ochoa G (2017) Evolutionary Algorithms with Linkage Information for Feature Selection in Brain Computer Interfaces. In: Angelov P, Gegov A, Jayne C, Shen Q (eds) Advances in computational intelligence systems. Advances in intelligent systems and computing, vol 513. Springer, Cham

    Google Scholar 

  4. Ahangi A, Karamnejad M, Mohammadi N, Ebrahimpour R, Bagheri N (2013) Multiple classifier system for EEG signal classification with application to brain-computer interfaces. Neural Comput Appl 23(5):1319–1327

    Article  Google Scholar 

  5. Akram F, Han SM, Kim TS (2015) An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier. Comput Biol Med 56:30–36

    Article  Google Scholar 

  6. Alamdari N, Haider A, Arefin R, Verma AK, Tavakolian K, Fazel-Rezai R (2016) A review of methods and applications of brain computer interface systems. In: 2016 IEEE International Conference on Electro Information Technology (EIT), May 2016. IEEE, pp 0345–0350

    Google Scholar 

  7. Al-Fahoum AS, Al-Fraihat AA (2014) Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. In: ISRN Neuroscience 2014

    Google Scholar 

  8. Aydemir O (2016) Classification of 2-dimensional cursor movement imagery EEG signals. In: 2016 39th International Conference on Telecommunications and Signal Processing (TSP), June 2016. IEEE, pp 370–373

    Google Scholar 

  9. Bakhshi A, Ahmadifard A (2012) A comparison among classification accuracy of neural network, FLDA and BLDA in P 300-based BCI system. Int J Comput Appl 46(19):11–15

    Google Scholar 

  10. Bashar SK, Hassan AR, Bhuiyan MIH (2015) Identification of motor imagery movements from EEG signals using dual tree complex wavelet transform. In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Aug 2015. IEEE, pp 290–296

    Google Scholar 

  11. Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 36(1):105–139

    Article  Google Scholar 

  12. Bentlemsan M, Zemouri ET, Bouchaffra D, Yahya-Zoubir B, Ferroudji K (2014) Random forest and filter bank common spatial patterns for EEG-based motor imagery classification. In: 2014 5th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Jan 2014. IEEE, pp 235–238

    Google Scholar 

  13. Bhattacharyya S, Khasnobish A, Chatterjee S, Konar A, Tibarewala DN (2010) Performance analysis of LDA, QDA and KNN algorithms in left-right limb movement classification from EEG data. In: 2010 International Conference on Systems in Medicine and Biology (ICSMB), Dec 2010. IEEE, pp 126–131

    Google Scholar 

  14. Bi L, Fan XA, Liu Y (2013) EEG-based brain-controlled mobile robots: a survey. IEEE Trans Hum-Mach Syst 43(2):161–176

    Article  Google Scholar 

  15. Blankertz B, Lemm S, Treder M, Haufe S, Muller KR (2011) Single-trial analysis and classification of ERP components–a tutorial. NeuroImage 56(2):814–825

    Article  Google Scholar 

  16. Bostanov V (2004) BCI competition 2003-data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram. IEEE Trans Biomed Eng 51(6):1057–1061

    Article  Google Scholar 

  17. Boye AT, Kristiansen UQ, Billinger M, do Nascimento OF, Farina D (2008) Identification of movement-related cortical potentials with optimized spatial filtering and principal component analysis. Biomed Signal Process Control 3(4):300–304

    Article  Google Scholar 

  18. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MathSciNet  MATH  Google Scholar 

  19. Chakraborty S, Kumar S, Paul S, Kairi A (2017) A study of product trend analysis of review datasets using Naive Bayes, K-NN and SVM classifiers. Int J Adv Eng Manag 2(9):204–213. https://doi.org/10.24999/IJOAEM/02090047

    Article  Google Scholar 

  20. Chen LL, Madhavan R, Rapoport BI, Anderson WS (2013) Real-time brain oscillation detection and phase-locked stimulation using autoregressive spectral estimation and time-series forward prediction. IEEE Trans Biomed Eng 60(3):753–762

    Article  Google Scholar 

  21. Chiappa S, Barber D (2006) EEG classification using generative independent component analysis. Neurocomputing 69(7):769–777

    Article  Google Scholar 

  22. Corralejo R, Hornero R, Alvarez D (2011) Feature selection using a genetic algorithm in a motor imagery-based brain computer interface. In: 2011 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, EMBC, Aug 2011. IEEE, pp 7703–7706

    Google Scholar 

  23. Cvetkovic D, Ubeyli ED, Cosic I (2008) Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: a pilot study. Digit Signal Process 18(5):861–874

    Article  Google Scholar 

  24. Darvishi S, Al-Ani A (2007) Brain-computer interface analysis using continuous wavelet transform and adaptive neuro-fuzzy classifier. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Aug 2007. EMBS’07. IEEE, pp 3220–3223

    Google Scholar 

  25. Das Chakladar D, Chakraborty S (2017) Study and analysis of a fast moving cursor Control in a multithreaded way in brain computer interface. In: CICBA Conference, Kolkata

    Google Scholar 

  26. Demiralp T, Yordanova J, Kolev V, Ademoglu A, Devrim M, Samar VJ (1999) Time –frequency analysis of single-sweep event-related potentials by means of fast wavelet transform. Brain Lang 66(1):129–145

    Article  Google Scholar 

  27. Devlaminck D, Wyns B, Boullart L, Santens P, Otte G (2009) Brain-computer interfaces: from theory to practice. In: ESANN

    Google Scholar 

  28. Dey L, Chakraborty S, Biswas A, Bose B, Tiwari S (2016) Sentiment analysis of review datasets using Naive Bayes’ and K-NN classifier. Int J Inf Eng Electr Bus (IJIEEB) 8(4):54–62. https://doi.org/10.5815/ijieeb.2016.04.07

    Google Scholar 

  29. Dietterich TG (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 40(2):139–157

    Article  Google Scholar 

  30. Duda RO, Hart PE, Stork DG (1995) Pattern classification and scene analysis, 2nd edn. Wiley Interscience, New York

    Google Scholar 

  31. Fatehi TAH, Suleiman ABR (2011) Features extraction techniques of EEG signals For BCI application, pp 35–40

    Google Scholar 

  32. Fatourechi M, Bashashati A, Ward RK, Birch GE (2005) A hybrid genetic algorithm approach for improving the performance of the LF-ASD brain computer interface. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar 2005. Proceedings (ICASSP’05), vol 5. IEEE, pp v-345

    Google Scholar 

  33. Fazel-Rezai R, Abhari K (2008) A comparison between a matrix-based and a region-based P300 speller paradigms for brain-computer interface. In: 30th Annual International Conference of the IEEE 2008 on Engineering in Medicine and Biology Society, Aug 2008. EMBS’08. IEEE, pp 1147–1150

    Google Scholar 

  34. Fazel-Rezai R, Abhari K (2009) A region-based P300 speller for brain-computer interface. Can J Electr Comput Eng 34(3):81–85

    Article  Google Scholar 

  35. Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning. Springer series in statistics, vol 1. Springer, New York, pp 241–249

    Google Scholar 

  36. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging, boosting, and hybrid-based approaches. IEEE Trans Syst Man Cybern Part C (Appl Rev) 42(4):463–484

    Article  Google Scholar 

  37. Gao JF, Yang Y, Lin P, Wang P, Zheng CX (2010) Automatic removal of eye-movement and blink artifacts from EEG signals. Brain Topogr 23(1):105–114

    Article  Google Scholar 

  38. Garcia GN, Ebrahimi T, Vesin JM (2003) Support vector EEG classification in the Fourier and time-frequency correlation domains. In: First International IEEE EMBS Conference on Neural Engineering, Mar 2003. Conference Proceedings. IEEE, pp 591–594

    Google Scholar 

  39. Garrett D, Peterson DA, Anderson CW, Thaut MH (2003) Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans Neural Syst Rehabil Eng 11(2):141–144

    Article  Google Scholar 

  40. Gavett S, Wygant Z, Amiri S, Fazel-Rezai R (2012) Reducing human error in P300 speller paradigm for brain-computer interface. In: 2012 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC), Aug 2012. IEEE, pp 2869–2872

    Google Scholar 

  41. Goswami S, Das AK, Chakrabarti A, Chakraborty B (2017) A feature cluster taxonomy based feature selection technique. Exp Syst Appl 79:76–89

    Article  Google Scholar 

  42. Grosse-Wentrup M, Buss M (2008) Multiclass common spatial patterns and information theoretic feature extraction. IEEE Trans Biomed Eng 55(8):1991–2000

    Article  Google Scholar 

  43. Hazrati MK, Erfanian A (2010) An online EEG-based brain-computer interfaces for controlling hand grasp using an adaptive probabilistic neural network. Med Eng Phys 32(7):730–739

    Article  Google Scholar 

  44. Herman P, Prasad G, McGinnity TM (2006) Investigation of the type-2 fuzzy logic approach to classification in an EEG-based brain-computer interface. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, Jan 2005. IEEE-EMBS’05. IEEE, pp 5354–5357

    Google Scholar 

  45. Hoffmann U, Garcia G, Vesin JM, Diserens K, Ebrahimi T (2005) A boosting approach to P300 detection with application to brain-computer interfaces. In: 2nd International IEEE EMBS Conference on Neural Engineering, Mar 2005. Conference Proceedings. IEEE, pp 97–100

    Google Scholar 

  46. Hsu WY (2010) EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features. J Neurosci Methods 189(2):295–302

    Article  Google Scholar 

  47. Hsu WY, Lin CC, Ju MS, Sun YN (2007) Wavelet-based fractal features with active segment selection: application to single-trial EEG data. J Neurosci Methods 163(1):145–160

    Article  Google Scholar 

  48. Huan NJ, Palaniappan R (2004) Neural network classification of autoregressive features from electroencephalogram signals for brain–computer interface design. J Neural Eng 1(3):142

    Article  Google Scholar 

  49. Ishfaque A, Awan AJ, Rashid N, Iqbal J (2013) Evaluation of ANN, LDA and decision trees for EEG based brain computer interface. In: 2013 IEEE 9th International Conference on Emerging Technologies (ICET), Dec 2013. IEEE, pp 1–6

    Google Scholar 

  50. James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer, New York

    Book  Google Scholar 

  51. Kaur M, Ahmed P, Rafiq MQ (2012) Technology development for unblessed people using BCI: a survey. Int J Comput Appl 40(1):18–24

    Google Scholar 

  52. Kayikcioglu T, Aydemir O (2010) A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data. Pattern Recogn Lett 31(11):1207–1215

    Article  Google Scholar 

  53. Khosrowabadi R, Quek C, Ang KK, Tung SW, Heijnen M (2011) A brain-computer interface for classifying EEG correlates of chronic mental stress. In: The 2011 International Joint Conference on Neural Networks (IJCNN), July 2011. IEEE, pp 757–762

    Google Scholar 

  54. Kolodziej M, Majkowski A, Rak R (2011) A new method of EEG classification for BCI with feature extraction based on higher order statistics of wavelet components and selection with genetic algorithms. Adaptive and Natural Computing Algorithms, pp 280–289

    Google Scholar 

  55. Kottaimalai R, Rajasekaran MP, Selvam V, Kannapiran B (2013) EEG signal classification using principal component analysis with neural network in brain computer interface applications. In: 2013 International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICE-CCN), Mar 2013. IEEE, pp 227–231

    Google Scholar 

  56. Krusienski DJ, McFarland DJ, Wolpaw JR (2006) An evaluation of autoregressive spectral estimation model order for brain-computer interface applications. In: 28th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, Aug 2006. EMBS’06. IEEE, pp 1323–1326

    Google Scholar 

  57. Lakshmi MR, Prasad DT, Prakash DVC (2014) Survey on EEG signal processing methods. Int J Adv Res Comput Sci Softw Eng 4(1):84–91

    Google Scholar 

  58. Lawhern V, Hairston WD, McDowell K, Westerfield M, Robbins K (2012) Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. J Neurosci Methods 208(2):181–189

    Article  Google Scholar 

  59. Lee H, Choi S (2003) PCA+ HMM+ SVM for EEG pattern classification. In: Seventh International Symposium on Signal Processing and Its Applications, July 2003. Proceedings, vol 1. IEEE, pp 541–544

    Google Scholar 

  60. Li Y, Ma Z, Lu W, Li Y (2006) Automatic removal of the eye blink artifact from EEG using an ICA-based template matching approach. Physiol Meas 27(4):425

    Article  Google Scholar 

  61. Li Y, Guan C, Li H, Chin Z (2008) A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Pattern Recogn Lett 29(9):1285–1294

    Article  Google Scholar 

  62. Li K, Sankar R, Arbel Y, Donchin E (2009) Single trial independent component analysis for P300 BCI system. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sept 2009. EMBC’09. IEEE, pp 4035–4038

    Google Scholar 

  63. Lin CJ, Hsieh MH (2009) Classification of mental task from EEG data using neural networks based on particle swarm optimization. Neurocomputing 72(4):1121–1130

    Article  Google Scholar 

  64. Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng 4(2):R1

    Article  Google Scholar 

  65. McFarland DJ, Krusienski DJ, Wolpaw JR (2006) Brain-computer interface signal processing at the Wadsworth center: mu and sensorimotor beta rhythms. Prog Brain Res 159:411–419

    Article  Google Scholar 

  66. McFarland DJ, Anderson CW, Muller KR, Schlogl A, Krusienski DJ (2006) BCI meeting 2005-workshop on BCI signal processing: feature extraction and translation. IEEE Trans Neural Syst Rehabil Eng 14(2):135–138

    Article  Google Scholar 

  67. Mousavi EA, Maller JJ, Fitzgerald PB, Lithgow BJ (2011) Wavelet common spatial pattern in asynchronous offline brain computer interfaces. Biomed Signal Process Control 6(2):121–128

    Article  Google Scholar 

  68. Mousavi M, Koerner AS, Zhang Q, Noh E, de Sa VR (2017) Improving motor imagery BCI with user response to feedback. Brain-Comput Interfaces 4(1–2):74–86

    Article  Google Scholar 

  69. Muhl C, Allison B, Nijholt A, Chanel G (2014) A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges. Brain-Comput Interfaces 1(2):66–84

    Article  Google Scholar 

  70. Muller KR, Anderson CW, Birch GE (2003) Linear and nonlinear methods for brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 11(2):165–169

    Article  Google Scholar 

  71. Mustafa M, RTaid MN, Murat ZH, Sulaiman N (2012) Comparison between KNN and ANN classification in brain balancing application via spectrogram image. JCSCM 2(4):17–22

    Article  Google Scholar 

  72. Nasehi S, Pourghassem H (2013) Mental task classification based on HMM and BPNN. In: 2013 International Conference on Communication Systems and Network Technologies (CSNT), Apr 2013. IEEE, pp 210–214

    Google Scholar 

  73. Nguyen T, Khosravi A, Creighton D, Nahavandi S (2015) EEG signal classification for BCI applications by wavelets and interval type-2 fuzzy logic systems. Exp Syst Appl 42(9):4370–4380

    Article  Google Scholar 

  74. Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12(2):1211–1279

    Article  Google Scholar 

  75. Obermaier B, Guger C, Neuper C, Pfurtscheller G (2001) Hidden Markov models for online classification of single trial EEG data. Pattern Recogn Lett 22(12):1299–1309

    Article  Google Scholar 

  76. Ofner P, Müller-Putz GR, Neuper C, Brunner C (2011) Comparison of feature extraction methods for brain-computer interfaces. NA. https://pdfs.semanticscholar.org/0b1c/ddbd83820d7f30a82ca340cf027c3cb17f87.pdf

  77. Peterson DA, Knight JN, Kirby MJ, Anderson CW, Thaut MH (2005) Feature selection and blind source separation in an EEG-based brain-computer interface. EURASIP J Adv Signal Process 2005(19):218613

    Article  Google Scholar 

  78. Pires G, Castelo-Branco M, Nunes U (2008) Visual P300-based BCI to steer a wheelchair: a Bayesian approach. In: 30th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, Aug 2008. EMBS’08. IEEE, pp 658–661

    Google Scholar 

  79. Platt JC, Nello Cristianini N, Shawe-Taylor J (2000) Large margin DAG for multiclass classification. In: Solla SA, Leen TK, Muller K-R (eds) Advances in neural information processing systems 12. MIT Press, Cambridge, MA, pp 547–553

    Google Scholar 

  80. Rak RJ, Kolodziej M, Majkowski A (2012) Brain-computer interface as measurement and control system the review paper. Metrol Meas Syst 19(3):427–444

    Article  Google Scholar 

  81. Rakotomamonjy A, Guigue V (2008) BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller. IEEE Trans Biomed Eng 55(3):1147–1154

    Article  Google Scholar 

  82. Ramadan RA, Refat S, Elshahed MA, Ali RA (2015) Basics of brain computer interface. In: Hassanien A, Azar A (eds) Brain-computer interfaces. Intelligent systems reference library, vol 74. Springer, Cham

    Google Scholar 

  83. Rejer I (2015) Genetic algorithm with aggressive mutation for feature selection in BCI feature space. Pattern Anal Appl 18(3):485–492

    Article  MathSciNet  Google Scholar 

  84. Roman-Gonzalez A (2012) EEG signal processing for BCI applications. In: Hippe ZS, Kulikowski JL, Mroczek T (eds) Human – computer systems interaction: backgrounds and applications 2. Advances in intelligent and soft computing, vol 98. Springer, Berlin/Heidelberg.

    Google Scholar 

  85. Samek W, Vidaurre C, Muller KR, Kawanabe M (2012) Stationary common spatial patterns for brain–computer interfacing. J Neural Eng 9(2):026013

    Article  Google Scholar 

  86. Sanei S, Chambers JA (2013) EEG signal processing. Wiley, Somerset

    Book  Google Scholar 

  87. Scherer R, Muller GR, Neuper C, Graimann B, Pfurtscheller G (2004) An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Trans Biomed Eng 51(6):979–984

    Article  Google Scholar 

  88. Schlogl A, Lee F, Bischof H, Pfurtscheller G (2005) Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J Neural Eng 2(4):L14

    Article  Google Scholar 

  89. Schwenk H, Bengio Y (2000) Boosting neural networks. Neural Comput 12(8):1869–1887

    Article  Google Scholar 

  90. Shi X, Xu G, Shen F, Zhao J (2015) Solving the data imbalance problem of P300 detection via random under-sampling bagging SVMs. In: 2015 International Joint Conference on Neural Networks (IJCNN), July 2015. IEEE, pp 1–5

    Google Scholar 

  91. Sitaram R, Zhang H, Guan C, Thulasidas M, Hoshi Y, Ishikawa A, Birbaumer N (2007) Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. NeuroImage 34(4):1416–1427

    Article  Google Scholar 

  92. Suleiman ABR, Fatehi TAH (2007) Features extraction techniques of EEG signal for BCI applications. Faculty of Computer and Information Engineering Department College of Electronics Engineering, University of Mosul

    Google Scholar 

  93. Sykacek P, Roberts SJ, Stokes M (2004) Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation. IEEE Trans Biomed Eng 51(5):719–727

    Article  Google Scholar 

  94. Thomas E, Fruitet J, Clerc M (2013) Combining ERD and ERS features to create a system-paced BCI. J Neurosci Methods 216(2):96–103

    Article  Google Scholar 

  95. Thulasidas M, Guan C, Wu J (2006) Robust classification of EEG signal for brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 14(1):24–29

    Article  Google Scholar 

  96. Ting W, Guo-zheng Y, Bang-hua Y, Hong S (2008) EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement 41(6):618–625

    Article  Google Scholar 

  97. Van Gerven M, Farquhar J, Schaefer R, Vlek R, Geuze J, Nijholt A, Desain P (2009) The brain-computer interfaces cycle. J Neural Eng 6(4):041001

    Article  Google Scholar 

  98. Vidaurre C, Kramer N, Blankertz B, Schlogl A (2009) Time domain parameters as a feature for EEG-based brain-computer interfaces. Neural Netw 22(9):1313–1319

    Article  Google Scholar 

  99. Von Bunau P, Meinecke FC, Kiraly FC, Muller KR (2009) Finding stationary subspaces in multivariate time series. Phys Rev Lett 103(21):214101

    Article  Google Scholar 

  100. Wang J, Xu G, Wang L, Zhang H (2010) Feature extraction of brain-computer interface based on improved multivariate adaptive autoregressive models. In: 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI), Oct 2010, vol 2. IEEE, pp 895–898

    Google Scholar 

  101. Wolpaw J, Wolpaw EW (eds) (2012) Brain-computer interfaces: principles and practice. OUP, Oxford/New York

    Google Scholar 

  102. Xing S, McCardle R, Xie S (2012) Reading the mind: the potential of electroencephalography in brain computer interfaces. In: 2012 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nov 2012. IEEE, pp 275–280

    Google Scholar 

  103. Yang R, Gray DA, Ng BW, He M (2009) Comparative analysis of signal processing in brain computer interface. In: 4th IEEE Conference on Industrial Electronics and Applications, May 2009, ICIEA’09. IEEE, pp 580–585

    Google Scholar 

  104. Yang J, Singh H, Hines EL, Schlaghecken F, Iliescu DD, Leeson MS, Stocks NG (2012) Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Artif Intell Med 55(2):117–126

    Article  Google Scholar 

  105. Yuan H, He B (2014) Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Trans Biomed Eng 61(5):1425–1435

    Article  Google Scholar 

  106. Zhang H, Guan C, Wang C (2008) Asynchronous P300-based brain–computer interfaces: a computational approach with statistical models. IEEE Trans Biomed Eng 55(6):1754–1763

    Article  Google Scholar 

Download references

Acknowledgements

No research funding has been received for this survey work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakladar, D.D., Chakraborty, S. (2019). Feature Extraction and Classification in Brain-Computer Interfacing: Future Research Issues and Challenges. In: Li, X., Wong, KC. (eds) Natural Computing for Unsupervised Learning. Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-98566-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98566-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98565-7

  • Online ISBN: 978-3-319-98566-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics