Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 217))

Abstract

Recent developments in integrated optics and miniaturization of optical components and devices put forward new challenges for nonlinear optics at the (sub)wavelength scales. In order to address these challenges, plasmonic modes, related to a coupled state of photons and coherent free-carrier oscillations in conductors, their nanostructures, and plasmonic metamaterials, have recently been widely used to tailor spectral and dynamic properties of the nonlinear response. Providing strong local field enhancement, plasmonic modes boost nonlinear interactions, leading to high effective nonlinear susceptibilities and offering one of the fastest nonlinear response due to the free-carriers dynamics. In this chapter, we will overview principles and various effects in nonlinear plasmonics and plasmonic metamaterials. Engineered harmonic generation and soliton formation, related to coherent nonlinear interactions in free-electron gas are discussed and a hydrodynamic model for coherent nonlinearity is introduced. The Kerr-type nonlinearities for ultrafast optical signal processing are considered in terms of electron gas excitation and relaxation dynamics in the nanostructures. The flexibility and unique features of free-electron nonlinearities in plasmonic nanostructures are important for nonlinear plasmonic applications in free-space as well as integrated and quantum nanophotonic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.W. Boyd, Nonlinear Optics (Academic Press, 2008)

    Google Scholar 

  2. Y.R. Shen, The Principles of Nonlinear Optics (Wiley, 2002)

    Google Scholar 

  3. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  4. A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005)

    Article  ADS  Google Scholar 

  5. S.I. Bozhevolnyi (ed.), Plasmonic Nanoguides and Cirquits (Pan Stanford Publishing Pte. Ltd., 2009)

    Google Scholar 

  6. A.V. Zayats, S. Maier (eds.), Active Plasmonics and Tuneable Plasmonic Metamaterials (Wiley, 2013)

    Google Scholar 

  7. W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009)

    Google Scholar 

  8. A.A. Maradudin, J.R. Sambles, W.L. Barnes (eds.), Modern Plasmonics (Elsevier, 2014)

    Google Scholar 

  9. J.A. Schuller, E.S. Barnard, W.S. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010)

    Article  ADS  Google Scholar 

  10. M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photonics 6, 737–748 (2012)

    Article  ADS  Google Scholar 

  11. A.D. Boardman, A.V. Zayats, Nonlinear plasmonics, in Modern Plasmonics, ed. by A.A. Maradudin, J.R. Sambles, W.L. Barnes (Elsevier, 2014)

    Google Scholar 

  12. A.V. Krasavin, P. Ginzburg, A.V. Zayats, Free-electron optical nonlinearities in plasmonic nanostructures: a review of the hydrodynamic description. Laser Photon. Rev. 12, 1700082 (2018)

    Article  ADS  Google Scholar 

  13. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer, 1988)

    Google Scholar 

  14. A.V. Krasavin, A.V. Zayats, Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides. Adv. Opt. Mater. 3, 1662–1690 (2015)

    Article  Google Scholar 

  15. S.M. Nie, S.R. Emery, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)

    Article  Google Scholar 

  16. N.A. Mortensen, S. Raza, M. Wubs, T. Sondergaard, S.I. Bozhevolnyi, A generalized non-local optical response theory for plasmonic nanostructures. Nat. Commun. 5, 3809 (2014)

    Article  ADS  Google Scholar 

  17. P. Ginzburg, A.V. Zayats, Localized surface plasmon resonances in spatially dispersive nano-objects: phenomenological treatise. ACS Nano 7, 4334–4342 (2013)

    Article  Google Scholar 

  18. M. Agio, A. Alu (eds.), Optical Antennas, (Cambridge University Press, 2013)

    Google Scholar 

  19. A.G. Malshukov, Surface-enhanced Raman scattering. The present status. Phys. Rep.-Rev. Sect. Phys. Lett. 194, 343–349 (1990)

    Google Scholar 

  20. J.D. Jackson, Classical Electrodynamics (Wiley, 1998)

    Google Scholar 

  21. C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011)

    Article  ADS  Google Scholar 

  22. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

    Article  ADS  Google Scholar 

  23. A.V. Zayats, I.I. Smolyaninov, C.C. Davis, Observation of localized plasmonic excitations in thin metal films with near-field second-harmonic microscopy. Opt. Commun. 169, 93–96 (1999)

    Article  ADS  Google Scholar 

  24. F. Keilmann, R. Hillenbrand, Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. London Ser. A 362, 787–805 (2004)

    Article  ADS  Google Scholar 

  25. J. Butet, T.V. Raziman, K.Y. Yang, G.D. Bernasconi, O.J. Martin, Controlling the nonlinear optical properties of plasmonic nanoparticles with the phase of their linear response. Opt. Express 24, 17138–17148 (2016)

    Article  ADS  Google Scholar 

  26. G. Marino, P. Segovia, A.V. Krasavin, P. Ginzburg, N. Olivier, G.A. Wurtz, A.V. Zayats, Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab. Laser Photon. Rev. 12, 1700189 (2018)

    Article  ADS  Google Scholar 

  27. P. Ginzburg, A. Krasavin, Y. Sonnefraud, A. Murphy, R.J. Pollard, S.A. Maier, A.V. Zayats, Nonlinearly coupled localized plasmon resonances: resonant second-harmonic generation. Phys. Rev. B 86, 085422 (2012)

    Article  ADS  Google Scholar 

  28. A.V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz, R. Atkinson, R. Pollard, V.A. Podolskiy, A.V. Zayats, Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009)

    Article  ADS  Google Scholar 

  29. N. Vasilantonakis, G.A. Wurtz, V.A. Podolskiy, A.V. Zayats, Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement. Opt. Express 23, 14329–14343 (2015)

    Article  ADS  Google Scholar 

  30. M.G. Banaee, K.B. Crozier, Mixed dimer double-resonance substrates for surface-enhanced raman spectroscopy. ACS Nano 5, 307–314 (2011)

    Article  Google Scholar 

  31. P. Genevet, J.P. Tetienne, E. Gatzogiannis, R. Blanchard, M.A. Kats, M.O. Scully, F. Capasso, Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. Nano Lett. 10, 4880–4883 (2010)

    Article  ADS  Google Scholar 

  32. M. Danckwerts, L. Novotny, Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007)

    Article  ADS  Google Scholar 

  33. A.V. Krasavin, T.P. Vo, W. Dickson, P.M. Bolger, A.V. Zayats, All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain. Nano Lett. 11, 2231–2235 (2011)

    Article  ADS  Google Scholar 

  34. A.V. Krasavin, S. Randhawa, J.S. Bouillard, J. Renger, R. Quidant, A.V. Zayats, Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry. Opt. Express 19, 25222–25229 (2011)

    Article  ADS  Google Scholar 

  35. A.V. Krasavin, A.V. Zayats, All-optical active components for dielectric-loaded plasmonic waveguides. Opt. Commun. 283, 1581–1584 (2010)

    Article  ADS  Google Scholar 

  36. A.V. Krasavin, A.V. Zayats, Benchmarking system-level performance of passive and active plasmonic components: integrated circuit approach. Proc. IEEE 104, 2338–2348 (2016)

    Article  Google Scholar 

  37. K.F. MacDonald, Z.L. Samson, M.I. Stockman, N.I. Zheludev, Ultrafast active plasmonics. Nat. Photonics 3, 55–58 (2009)

    Article  ADS  Google Scholar 

  38. D. Pacifici, H.J. Lezec, H.A. Atwater, All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photonics 1, 402–406 (2007)

    Article  ADS  Google Scholar 

  39. R.A. Pala, K.T. Shimizu, N.A. Melosh, M.L. Brongersma, A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8, 1506–1510 (2008)

    Article  ADS  Google Scholar 

  40. R. Adato, H. Altug, In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat. Commun. 4, 2154 (2013)

    Article  ADS  Google Scholar 

  41. A.V. Krasavin, A.V. Zayats, Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. Phys. Rev. Lett. 109, 053901 (2012)

    Article  ADS  Google Scholar 

  42. W.S. Cai, A.P. Vasudev, M.L. Brongersma, Electrically controlled nonlinear generation of light with plasmonics. Science 333, 1720–1723 (2011)

    Article  ADS  Google Scholar 

  43. I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M.F. Kling, M.I. Stockman, S.-W. Kim, Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat. Photonics 5, 677–681 (2011)

    Article  ADS  Google Scholar 

  44. G.A. Wurtz, R. Pollard, W. Hendren, G.P. Wiederrecht, D.J. Gosztola, V.A. Podolskiy, A.V. Zayats, Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotechnol. 6, 107–111 (2011)

    Article  ADS  Google Scholar 

  45. A.D. Neira, N. Olivier, M.E. Nasir, W. Dickson, G.A. Wurtz, A.V. Zayats, Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nat. Commun. 6, 7757 (2015)

    Article  ADS  Google Scholar 

  46. A.D. Neira, G.A. Wurtz, P. Ginzburg, A.V. Zayats, Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry. Opt. Express 22, 10987–10994 (2014)

    Article  ADS  Google Scholar 

  47. G. Sartorello, N. Olivier, J.J. Zhang, W.S. Yue, D.J. Gosztola, G.P. Wiederrecht, G. Wurtz, A.V. Zayats, Ultrafast optical modulation of second- and third-harmonic generation from cut-disk-based metasurfaces. ACS Photonics 3, 1517–1522 (2016)

    Article  Google Scholar 

  48. R.W. Boyd, Z. Shi, I. De Leon, The third-order nonlinear optical susceptibility of gold. Opt. Commun. 326, 74–79 (2014)

    Article  ADS  Google Scholar 

  49. O. Lysenko, M. Bache, N. Olivier, A.V. Zayats, A. Lavrinenko, Nonlinear dynamics of ultrashort long-range surface plasmon polariton pulses in gold strip waveguides. ACS Photonics 3, 2324–2329 (2016)

    Article  Google Scholar 

  50. J. Dryzek, A. Czapla, Quantum size effect in optical spectra of this metallic films. Phys. Rev. Lett. 58, 721–724 (1987)

    Article  ADS  Google Scholar 

  51. A.V. Zayats, O. Keller, K. Pedersen, A. Liu, F.A. Pudonin, Linear optical properties and second-harmonic generation from ultrathin niobium films: a search for quantization effects. IEEE J. Quantum Electron. 31, 2044–2051 (1995)

    Article  ADS  Google Scholar 

  52. N. Bloembergen, R.K. Chang, S.S. Jha, C.H. Lee, Optical second-harmonic generation in reflection from media with inversion symmetry. Phys. Rev. 174, 813–822 (1968)

    Article  ADS  Google Scholar 

  53. M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, H. Schmidt, Optically induced damping of the surface plasmon resonance in gold colloids. Phys. Rev. Lett. 78, 2192–2195 (1997)

    Article  ADS  Google Scholar 

  54. N.N. Lepeshkin, A. Schweinsberg, G. Piredda, R.S. Bennink, R.W. Boyd, Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals. Phys. Rev. Lett. 93, 123902 (2004)

    Article  ADS  Google Scholar 

  55. G. Piredda, D.D. Smith, B. Wendling, R.W. Boyd, Nonlinear optical properties of a gold-silica composite with high gold fill fraction and the sign change of its nonlinear absorption coefficient. J. Opt. Soc. Am. B 25, 945–950 (2008)

    Article  ADS  Google Scholar 

  56. M. Kono, M.M. Škorić, Nonlinear Physics of Plasmas (Springer, Berlin, Heidelberg, 2010)

    Book  MATH  Google Scholar 

  57. P. Ginzburg, A.V. Krasavin, G.A. Wurtz, A.V. Zayats, Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures. ACS Photonics 2, 8–13 (2015)

    Article  Google Scholar 

  58. A.V. Krasavin, P. Ginzburg, G.A. Wurtz, A.V. Zayats, Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures. Nat. Commun. 7, 11497 (2016)

    Article  ADS  Google Scholar 

  59. M. Scalora, M.A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, M.J. Bloemer, Second- and third-harmonic generation in metal-based structures. Phys. Rev. A 82, 043828 (2010)

    Article  ADS  Google Scholar 

  60. D.W. Snoke, Solid State Physics: Essential Concepts (Addison-Wesley, 2009)

    Google Scholar 

  61. J.E. Sipe, V.C.Y. So, M. Fukui, G.I. Stegeman, Analysis of second-harmonic generation at metal surfaces. Phys. Rev. B 21, 4389–4402 (1980)

    Article  ADS  Google Scholar 

  62. P. Ginzburg, A. Hayat, N. Berkovitch, M. Orenstein, Nonlocal ponderomotive nonlinearity in plasmonics. Opt. Lett. 35, 1551–1553 (2010)

    Article  ADS  Google Scholar 

  63. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  64. R. Sundararaman, P. Narang, A.S. Jermyn, W.A. Goddard III, H.A. Atwater, Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014)

    Article  ADS  Google Scholar 

  65. T. Higuchi, M.I. Stockman, P. Hommelhoff, Strong-field perspective on high-harmonic radiation from bulk solids. Phys. Rev. Lett. 113, 213901 (2014)

    Article  ADS  Google Scholar 

  66. N.W. Ashcroft, N. Mermin, Solid State Physics, (Brooks/Cole, 1976)

    Google Scholar 

  67. D.R. Nicholson, Introduction to Plasma Theory (Wiley, 1983)

    Google Scholar 

  68. L. Jiang, H.-L. Tsai, Improved two-temperature model and its application in ultrashort laser heating of metal films. J. Heat Transfer 127, 1167–1173 (2005)

    Article  Google Scholar 

  69. J. Bigot, J. Merle, O. Cregut, A. Daunois, Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses. Phys. Rev. Lett. 75, 4702–4705 (1995)

    Article  ADS  Google Scholar 

  70. D. Pines, Elementary Excitations in Solids: Lectures on Protons, Electrons, and Plasmons (Perseus Books, 1999)

    Google Scholar 

  71. A. Marini, M. Conforti, G. Della Valle, H.W. Lee, T.X. Tran, W. Chang, M.A. Schmidt, S. Longhi, P.S.J. Russell, F. Biancalana, Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals. New J. Phys. 15, 19, 013033 (2013)

    Article  ADS  Google Scholar 

  72. S. Peruch, A. Neira, G.A. Wurtz, B. Wells, V.A. Podolskiy, A.V. Zayats, Geometry defines ultrafast hot carrier dynamics and Kerr nonlinearity in plasmonic metamaterial waveguides and cavities. Adv. Opt. Mater. 5, 1700299 (2017)

    Article  Google Scholar 

  73. J. Butet, P.F. Brevet, O.J.F. Martin, Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano 9, 10545–10562 (2015)

    Article  Google Scholar 

  74. J. Rudnick, E.A. Stern, Second-harmonic radiation from metal surfaces. Phys. Rev. B 4, 4274–4290 (1971)

    Article  ADS  Google Scholar 

  75. D. Maystre, M. Neviere, R. Reinisch, Nonlinear polarisation inside metals: a mathematical study of the free-electron model. Appl. Phys. A 39, 115–121 (1986)

    Article  ADS  Google Scholar 

  76. X.M. Hua, J.I. Gersten, Theory of second-harmonic generation by small metal spheres. Phys. Rev. B 33, 3756–3764 (1986)

    Article  ADS  Google Scholar 

  77. D. Ostling, P. Stampfli, K.H. Bennemann, Theory of nonlinear optical properties of small metallic spheres. Z. Phys. D 28, 169–175 (1993)

    Article  ADS  Google Scholar 

  78. P. Guyot-Sionnest, Y.R. Shen, Bulk contribution in surface second-harmonic generation. Phys. Rev. B 38, 7985–7989 (1988)

    Article  ADS  Google Scholar 

  79. F.X. Wang, F.J. Rodríguez, W.M. Albers, R. Ahorinta, J.E. Sipe, M. Kauranen, Surface and bulk contributions to the second-order nonlinear optical response of a gold film. Phys. Rev. B 80, 233402 (2009)

    Article  ADS  Google Scholar 

  80. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, P.F. Brevet, Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions. Phys. Rev. B 82, 235403 (2010)

    Article  ADS  Google Scholar 

  81. A. Benedetti, M. Centini, C. Sibilia, M. Bertolotti, Engineering the second harmonic generation pattern from coupled gold nanowires. J. Opt. Soc. Am. B 27, 408–416 (2010)

    Article  ADS  Google Scholar 

  82. A. Benedetti, M. Centini, M. Bertolotti, C. Sibilia, Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis. Opt. Express 19, 26752–26767 (2011)

    Article  ADS  Google Scholar 

  83. C. Forestiere, A. Capretti, G. Miano, Surface integral method for second harmonic generation in metal nanoparticles including both local-surface and nonlocal-bulk sources. J. Opt. Soc. Am. B 30, 2355–2364 (2013)

    Article  ADS  Google Scholar 

  84. A. Capretti, C. Forestiere, L. Dal Negro, G. Miano, Full-wave analytical solution of second-harmonic generation in metal nanospheres. Plasmonics 9, 151–166 (2013)

    Article  Google Scholar 

  85. J.I. Dadap, J. Shan, K.B. Eisenthal, T.F. Heinz, Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material. Phys. Rev. Lett. 83, 4045–4048 (1999)

    Article  ADS  Google Scholar 

  86. J.I. Dadap, J. Shan, T.F. Heinz, Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit. J. Opt. Soc. Am. B 21, 1328–1347 (2004)

    Article  ADS  Google Scholar 

  87. Y. Pavlyukh, W. Hübner, Nonlinear Mie scattering from spherical particles. Phys. Rev. B 70, 245434 (2004)

    Article  ADS  Google Scholar 

  88. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, P.F. Brevet, Electric dipole origin of the second harmonic generation of small metallic particles. Phys. Rev. B 71, 165407 (2005)

    Article  ADS  Google Scholar 

  89. I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, P.F. Brevet, Multipolar contributions of the second harmonic generation from silver and gold nanoparticles. J. Phys. Chem. C 111, 9044–9048 (2007)

    Article  Google Scholar 

  90. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, P.F. Brevet, Multipolar second-harmonic generation in noble metal nanoparticles. J. Opt. Soc. Am. B 25, 955–960 (2008)

    Article  ADS  Google Scholar 

  91. A.V. Smolyaninov II, C.C. Zayats, Davis: near-field second harmonic generation from a rough metal surface. Phys. Rev. B 56, 9290–9293 (1997)

    Article  ADS  Google Scholar 

  92. A.V. Zayats, T. Kalkbrenner, V. Sandoghdar, J. Mlynek, Second-harmonic generation from individual surface defects under local excitation. Phys. Rev. B 61, 4545–4548 (2000)

    Article  ADS  Google Scholar 

  93. R. Kolkowski, J. Szeszko, B. Dwir, E. Kapon, J. Zyss, Non-centrosymmetric plasmonic crystals for second-harmonic generation with controlled anisotropy and enhancement. Laser Photon. Rev. 10, 287–298 (2016)

    Article  ADS  Google Scholar 

  94. B.L. Wang, R. Wang, R.J. Liu, X.H. Lu, J. Zhao, Z.Y. Li, Origin of shape resonance in second-harmonic generation from metallic nanohole arrays. Sci. Rep. 3, 2358 (2013)

    Article  Google Scholar 

  95. K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang, Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater. 14, 379–383 (2015)

    Article  ADS  Google Scholar 

  96. M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, M. Finazzi, Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol. 10, 412–417 (2015)

    Article  ADS  Google Scholar 

  97. M.L. Ren, S.Y. Liu, B.L. Wang, B.Q. Chen, J. Li, Z.Y. Li, Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale. Opt. Express 22, 28653–28661 (2014)

    Article  ADS  Google Scholar 

  98. B.K. Canfield, H. Husu, J. Laukkanen, B.F. Bai, M. Kuittinen, J. Turunen, M. Kauranen, Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett. 7, 1251–1255 (2007)

    Article  ADS  Google Scholar 

  99. B. Wells, A.Y. Bykov, G. Marino, M.E. Nasir, A.V. Zayats, V.A. Podolskiy, Structural second-order nonlinearity in plasmonic metamaterials. Optica 5, 1502–1507 (2018)

    Article  Google Scholar 

  100. M.I. Shalaev, Z.A. Kudyshev, N.M. Litchinitser, Twisted light in a nonlinear mirror. Opt. Lett. 38, 4288–4291 (2013)

    Article  ADS  Google Scholar 

  101. K.A. O’Donnell, R. Torre, C.S. West, Observations of second-harmonic generation from randomly rough metal surfaces. Phys. Rev. B 55, 7985–7992 (1997)

    Article  ADS  Google Scholar 

  102. M.I. Stockman, D.J. Bergman, C. Anceau, S. Brasselet, J. Zyss, Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations. Phys. Rev. Lett. 92, 057402 (2004)

    Article  ADS  Google Scholar 

  103. T. Stefaniuk, N. Olivier, A. Belardini, C.P.T. McPolin, C. Sibilia, A.A. Wronkowska, A. Wronkowski, T. Szoplik, A.V. Zayats, Self-assembled silver-germanium nanolayer metamaterial with the enhanced nonlinear response. Adv. Opt. Mater. 5, 1700753 (2017)

    Article  Google Scholar 

  104. J.P. Dewitz, W. Hubner, K.H. Bennemann, Theory for nonlinear Mie-scattering from spherical metal clusters. Z. Phys. D 37, 75–84 (1996)

    Article  ADS  Google Scholar 

  105. D. Carroll, X.H. Zheng, Spatial and angular distributions of third harmonic generation from metal surfaces. Eur. Phys. J. D 5, 135–144 (1999)

    Article  ADS  Google Scholar 

  106. Y. Yu, S.-S. Fan, H.-W. Dai, Z.-W. Ma, X. Wang, J.-B. Han, L. Li, Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids. Appl. Phys. Lett. 105, 061903 (2014)

    Article  ADS  Google Scholar 

  107. B. Metzger, M. Hentschel, M. Nesterov, T. Schumacher, M. Lippitz, H. Giessen, Nonlinear optics of complex plasmonic structures: linear and third-order optical response of orthogonally coupled metallic nanoantennas. Appl. Phys. B 122, 77 (2016)

    Article  ADS  Google Scholar 

  108. J.B. Lassiter, X. Chen, X. Liu, C. Ciracì, T.B. Hoang, S. Larouche, S.-H. Oh, M.H. Mikkelsen, D.R. Smith, Third-harmonic generation enhancement by film-coupled plasmonic stripe resonators. ACS Photonics 1, 1212–1217 (2014)

    Article  Google Scholar 

  109. K. Li, X. Li, D. Yuan Lei, S. Wu, Y. Zhan, Plasmon gap mode-assisted third-harmonic generation from metal film-coupled nanowires. Appl. Phys. Lett. 104, 261105 (2014)

    Article  ADS  Google Scholar 

  110. M.S. Nezami, R. Gordon, Localized and propagating surface plasmon resonances in aperture-based third harmonic generation. Opt. Express 23, 32006–32014 (2015)

    Article  ADS  Google Scholar 

  111. G. Hajisalem, D.K. Hore, R. Gordon, Interband transition enhanced third harmonic generation from nanoplasmonic gold. Opt. Mater. Express 5, 2217–2224 (2015)

    Article  ADS  Google Scholar 

  112. T. Wu, P.P. Shum, Y. Sun, X. Shao, T. Huang, Study on the crucial conditions for efficient third harmonic generation using a metal-hybrid-metal plasmonic slot waveguide. Opt. Express 23, 253–263 (2015)

    Article  ADS  Google Scholar 

  113. I.D. Mayergoyz, D.R. Fredkin, Z. Zhang, Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B 72, 155412 (2005)

    Article  ADS  Google Scholar 

  114. J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, P.F. Brevet, Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles. Phys. Rev. Lett. 105, 077401 (2010)

    Article  ADS  Google Scholar 

  115. D.V. Guzatov, V.V. Klimov, M.Y. Pikhota, Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation. Laser Phys. 20, 85–99 (2009)

    Article  ADS  Google Scholar 

  116. S. Asano, G. Yamamoto, Light-scattering by a spheroidal particle. Appl. Opt. 14, 29–49 (1975)

    Article  ADS  Google Scholar 

  117. P. Segovia, G. Marino, A.V. Krasavin, N. Olivier, G.A. Wurtz, P.A. Belov, P. Ginzburg, A.V. Zayats, Hyperbolic metamaterial antenna for second-harmonic generation tomography. Opt. Express 23, 30730–30738 (2015)

    Article  ADS  Google Scholar 

  118. E.V. Makeev, S.E. Skipetrov, Second harmonic generation in suspensions of spherical particles. Opt. Commun. 224, 139–147 (2003)

    Article  ADS  Google Scholar 

  119. J.I. Dadap, Optical second-harmonic scattering from cylindrical particles. Phys. Rev. B 78, 205322 (2008)

    Article  ADS  Google Scholar 

  120. S. Varró, F. Ehlotzky, Higher-harmonic generation from a metal surface in a powerful laser field. Phys. Rev. A 49, 3106–3109 (1994)

    Article  ADS  Google Scholar 

  121. G. Farkas, C. Tóth, S.D. Moustaizis, N.A. Papadogiannis, C. Fotakis, Observation of multiple-harmonic radiation induced from a gold surface by picosecond neodymium-doped yttrium aluminum garnet laser pulses. Phys. Rev. A 46, R3605–R3608 (1992)

    Article  ADS  Google Scholar 

  122. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983)

    Google Scholar 

  123. S. Raza, S.I. Bozhevolnyi, M. Wubs, N. Asger Mortensen, Nonlocal optical response in metallic nanostructures. J. Phys. Condens. Matter 27, 183204 (2015)

    ADS  Google Scholar 

  124. G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N.A. Mortensen, M. Wubs, Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics. Nat. Commun. 6, 7132 (2015)

    Article  Google Scholar 

  125. R.B. Davidson Ii, J.I. Ziegler, G. Vargas, S.M. Avanesyan, Y. Gong, W. Hess, R.F. Haglund Jr, Efficient forward second-harmonic generation from planar archimedean nanospirals. Nanophotonics 4, 108–113 (2015)

    Google Scholar 

  126. H.M. Gibbs: Optical Bistability: Controlling Light with Light (Academic Press, 1985)

    Google Scholar 

  127. C.K. Sun, F. Vallée, L. Acioli, E.P. Ippen, J.G. Fujimoto, Femtosecond investigation of electron thermalization in gold. Phys. Rev. B 48, 12365–12368 (1993)

    Article  ADS  Google Scholar 

  128. N. Del Fatti, R. Bouffanais, F. Vallee, C. Flytzanis, Nonequilibrium electron interactions in metal films. Phys. Rev. Lett. 81, 922–925 (1998)

    Article  ADS  Google Scholar 

  129. M.I. Stockman, Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011)

    Article  ADS  Google Scholar 

  130. W. Dickson, G.A. Wurtz, P.R. Evans, R.J. Pollard, A.V. Zayats, Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett. 8, 281–286 (2008)

    Article  ADS  Google Scholar 

  131. R.A. Innes, J.R. Sambles, Optical non-linearity in liquid crystals using surface plasmon-polaritons. J. Phys. Condens. Matter 1, 6231–6260, 021 (1989)

    ADS  Google Scholar 

  132. Optical Properties of Organic Molecules and Crystals (Academic Press, 1987)

    Google Scholar 

  133. S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999)

    Article  Google Scholar 

  134. M. Pelton, J. Aizpurua, G. Bryant, Metal-nanoparticle plasmonics. Laser Photon. Rev. 2, 136–159 (2008)

    Article  ADS  Google Scholar 

  135. H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, F. Vallee, Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance. Phys. Rev. Lett. 107, 057402 (2011)

    Article  ADS  Google Scholar 

  136. M. Halonen, A.A. Lipovskii, Y.P. Svirko, Femtosecond absorption dynamics in glass-metal nanpcomposites. Opt. Express 15, 6840–6845 (2007)

    Article  ADS  Google Scholar 

  137. G. Ma, W. Sun, S.H. Tang, H. Zhang, Z. Shen, S. Qian, Size and-dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices. Opt. Lett. 27, 1043–1045 (2002)

    Article  ADS  Google Scholar 

  138. W. Dickson, G.A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, A.V. Zayats, Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties. Phys. Rev. B 76, 115411 (2007)

    Article  ADS  Google Scholar 

  139. M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A.S. Susha, A.L. Rogach, Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot—metal nanoparticle structures. Appl. Phys. Lett. 100, 063117 (2012)

    Article  ADS  Google Scholar 

  140. M. Abb, P. Albella, J. Aizpurua, O.L. Muskens, All-optical control of a single plasmonic nanoantenna-ITO hybrid. Nano Lett. 11, 2457–2463 (2011)

    Article  ADS  Google Scholar 

  141. I.S. Maksymov, A.E. Miroshnichenko, Y.S. Kivshar, Actively tunable bistable optical Yagi-Uda nanoantenna. Opt. Express 20, 8929–8938 (2012)

    Article  ADS  Google Scholar 

  142. I.I. Smolyaninov, Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric. Phys. Rev. Lett. 94, 057403 (2005)

    Article  ADS  Google Scholar 

  143. I. Smolyaninov, A.V. Zayats, A. Gungor, C.C. Davis, Single-photon tunneling via localized surface plasmons. Phys. Rev. Lett. 88, 187402 (2002)

    Article  ADS  Google Scholar 

  144. I.I. Smolyaninov, C.C. Davis, A.V. Zayats, Light-controlled photon tunneling. Appl. Phys. Lett. 81, 3314–3316 (2002)

    Article  ADS  Google Scholar 

  145. Y. Lin, X. Zhang, X. Fang, S. Liang, A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching. Nanoscale 8, 1421–1429 (2016)

    Article  ADS  Google Scholar 

  146. G. Della Valle, D. Polli, P. Biagioni, C. Martella, M.C. Giordano, M. Finazzi, S. Longhi, L. Duò, G. Cerullo, F. Buatier de Mongeot, Self-organized plasmonic metasurfaces for all-optical modulation. Phys. Rev. B 91, 235440 (2015)

    Google Scholar 

  147. M. Pohl, V.I. Belotelov, I.A. Akimov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, A.K. Zvezdin, D.R. Yakovlev, M. Bayer, Plasmonic crystals for ultrafast nanophotonics: optical switching of surface plasmon polaritons. Phys. Rev. B 85, 081401(R) (2012)

    Article  ADS  Google Scholar 

  148. X. Wang, R. Morea, J. Gonzalo, B. Palpant, Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles. Nano Lett. 15, 2633–2639 (2015)

    Article  ADS  Google Scholar 

  149. C.P.T. McPolin, N. Olivier, J.-S. Bouillard, D. O’Connor, A.V. Krasavin, W. Dickson, G.A. Wurtz, A.V. Zayats, Universal switching of plasmonic signals using optical resonator modes. Light Sci. Appl. 6, e16237 (2017)

    Article  Google Scholar 

  150. L.H. Nicholls, F.J. Rodriguez-Fortuno, M.E. Nasir, R.M. Cordova-Castro, N. Olivier, G.A. Wurtz, A.V. Zayats, Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat. Photonics 11, 628–633 (2017)

    Article  ADS  Google Scholar 

  151. N.E. Khokhlov, D.O. Ignatyeva, V.I. Belotelov, Plasmonic pulse shaping and velocity control via photoexcitation of electrons in a gold film. Opt. Express 22, 28019–28026 (2014)

    Article  ADS  Google Scholar 

  152. A.V. Krasavin, N.I. Zheludev, Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004)

    Article  ADS  Google Scholar 

  153. A.V. Krasavin, K.F. MacDonald, N.I. Zheludev, A.V. Zayats, High-contrast modulation of light with light by control of surface plasmon polariton wave coupling. Appl. Phys. Lett. 85, 3369–3371 (2004)

    Article  ADS  Google Scholar 

  154. A.V. Krasavin, A.V. Zayats, N.I. Zheludev, Active control of surface plasmon–polariton waves. J. Opt. A Pure Appl. Opt. 7, S85–S89 (2005)

    Article  ADS  Google Scholar 

  155. N. Rotenberg, M. Betz, H.M. van Driel, Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces. Phys. Rev. Lett. 105, 017402 (2010)

    Article  ADS  Google Scholar 

  156. A.V. Krasavin, A.V. Zayats, Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides. Phys. Rev. B 78, 045425 (2008)

    Article  ADS  Google Scholar 

  157. S. Randhawa, A.V. Krasavin, T. Holmgaard, J. Renger, S.I. Bozhevolnyi, A.V. Zayats, R. Quidant, Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths. Appl. Phys. Lett. 98, 161102 (2011)

    Article  ADS  Google Scholar 

  158. G.A. Wurtz, A.V. Zayats, Nonlinear surface plasmon polaritonic crystals. Laser Photonics Rev. 2, 125–135 (2008)

    Article  ADS  Google Scholar 

  159. V. Mikhailov, G.A. Wurtz, J. Elliott, P. Bayvel, A.V. Zayats, Dispersing light with surface plasmon polaritonic crystals. Phys. Rev. Lett. 99, 083901 (2007)

    Article  ADS  Google Scholar 

  160. A. Minovich, J. Farnell, D.N. Neshev, I. McKerracher, F. Karouta, J. Tian, D.A. Powell, I.V. Shadrivov, H. Hoe Tan, C. Jagadish, Y.S. Kivshar, Liquid crystal based nonlinear fishnet metamaterials. Appl. Phys. Lett. 100, 121113 (2012)

    Article  ADS  Google Scholar 

  161. I.I. Smolyaninov, A.V. Zayats, A. Stanishevsky, C.C. Davis, Optical control of photon tunneling through an array of nanometer-scale cylindrical channels. Phys. Rev. B 66, 205414 (2002)

    Article  ADS  Google Scholar 

  162. G.A. Wurtz, R. Pollard, A.V. Zayats, Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys. Rev. Lett. 97, 057402 (2006)

    Article  ADS  Google Scholar 

  163. N. Rotenberg, M. Betz, H.M. Van Driel, Ultrafast control of grating-assisted light coupling to surface plasmons. Opt. Lett. 33, 2137–2139 (2008)

    Article  ADS  Google Scholar 

  164. K.T. Tsai, G.A. Wurtz, J.Y. Chu, T.Y. Cheng, H.H. Wang, A.V. Krasavin, J.H. He, B.M. Wells, V.A. Podolskiy, J.K. Wang, Y.L. Wang, A.V. Zayats, Looking into meta-atoms of plasmonic nanowire metamaterial. Nano Lett. 14, 4971–4976 (2014)

    Article  ADS  Google Scholar 

  165. P. Ginzburg, D.J. Roth, M.E. Nasir, P. Segovia, A.V. Krasavin, J. Levitt, L.M. Hirvonen, B. Wells, K. Suhling, D. Richards, V.A. Podolskiy, A.V. Zayats, Spontaneous emission in non-local materials. Light Sci. Appl. 6, e16273 (2017)

    Article  Google Scholar 

  166. R.J. Pollard, A. Murphy, W.R. Hendren, P.R. Evans, R. Atkinson, G.A. Wurtz, A.V. Zayats, V.A. Podolskiy, Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 102, 127405 (2009)

    Article  ADS  Google Scholar 

  167. B.M. Wells, A.V. Zayats, V.A. Podolskiy, Nonlocal optics of plasmonic nanowire metamaterials. Phys. Rev. B 89, 10, 035111 (2014)

    Google Scholar 

  168. V.A. Podolskiy, P. Ginzburg, B. Wells, A.V. Zayats, Light emission in nonlocal plasmonic metamaterials. Faraday Discuss. 178, 61–70 (2015)

    Article  ADS  Google Scholar 

  169. A.E. Nikolaenko, F. De Angelis, S.A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, N.I. Zheludev, Carbon nanotubes in a photonic metamaterial. Phys. Rev. Lett. 104, 4, 153902 (2010)

    Google Scholar 

  170. M. Ren, B. Jia, J.Y. Ou, E. Plum, J. Zhang, K.F. MacDonald, A.E. Nikolaenko, J. Xu, M. Gu, N.I. Zheludev, Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011)

    Article  Google Scholar 

  171. G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dickson, R.J. Pollard, A.V. Zayats, W. Harrison, C. Bower, Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. Nano Lett. 7, 1297–1303 (2007)

    Article  ADS  Google Scholar 

  172. N. Vasilantonakis, M.E. Nasir, W. Dickson, G.A. Wurtz, A.V. Zayats, Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides. Laser Photon. Rev. 9, 345–353 (2015)

    Article  ADS  Google Scholar 

  173. M.Z. Alam, I. De Leon, R.W. Boyd, Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016)

    Article  ADS  Google Scholar 

  174. D. Mihalache, M. Bertolotti, C. Sibilia, Nonlinear wave propagation in planar structures, ed. by E. Wolf in Progress in Optics vol 27 (Elsevier, 1989)

    Google Scholar 

  175. P. Ginzburg, E. Hirshberg, M. Orenstein, Rigorous analysis of vectorial plasmonic diffraction: single- and double-slit experiments. J. Opt. A Pure Appl. Opt. 11, 114024 (2009)

    Article  ADS  Google Scholar 

  176. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  177. P. Ginzburg, D. Arbel, M. Orenstein, Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing. Opt. Lett. 31, 3288–3290 (2006)

    Article  ADS  Google Scholar 

  178. P. Ginzburg, M. Orenstein, Plasmonic transmission lines: from micro to nano scale with lambda/4 impedance matching. Opt. Express 15, 6762–6767 (2007)

    Article  ADS  Google Scholar 

  179. I.D. Rukhlenko, A. Pannipitiya, M. Premaratne, G.P. Agrawal, Exact dispersion relation for nonlinear plasmonic waveguides. Phys. Rev. B 84, 113409 (2011)

    Article  ADS  Google Scholar 

  180. P. Ginzburg, M. Orenstein, Nonlinear effects in plasmonic systems, in Active Plasmonics and Tuneable Plasmonic Metamaterials, ed. by A.V. Zayats, S.A. Maier (Wiley, 2013)

    Google Scholar 

  181. E. Feigenbaum, M. Orenstein, Plasmon-soliton. Opt. Lett. 32, 674–676 (2007)

    Article  ADS  Google Scholar 

  182. E. Feigenbaum, M. Orenstein, Modeling of complementary (void) plasmon waveguiding. J. Lightwave Technol. 25, 2547–2562 (2007)

    Article  ADS  Google Scholar 

  183. A.R. Davoyan, I.V. Shadrivov, Y.S. Kivshar, Self-focusing and spatial plasmon-polariton solitons. Opt. Express 17, 21732–21737 (2009)

    Article  ADS  Google Scholar 

  184. A.R. Davoyan, I.V. Shadrivov, A.A. Zharov, D.K. Gramotnev, Y.S. Kivshar, Nonlinear nanofocusing in tapered plasmonic waveguides. Phys. Rev. Lett. 105, 116804 (2010)

    Article  ADS  Google Scholar 

  185. A. Marini, D.V. Skryabin, B. Malomed, Stable spatial plasmon solitons in a dielectric-metal-dielectric geometry with gain and loss. Opt. Express 19, 6616–6622 (2011)

    Article  ADS  Google Scholar 

  186. Y. Liu, G. Bartal, D.A. Genov, X. Zhang, Subwavelength discrete solitons in nonlinear metamaterials. Phys. Rev. Lett. 99, 153901 (2007)

    Article  ADS  Google Scholar 

  187. Y.N. Karamzin, A.P. Sukhorukov, Mutual focusing of high-power light beams in media with quadratic nonlinearity. Sov. Phys. JETP 41, 414–420 (1976)

    Google Scholar 

  188. W.E. Torruellas, Z. Wang, D.J. Hagan, E.W. VanStryland, G.I. Stegeman, L. Torner, C.R. Menyuk, Observation of two-dimensional spatial solitary waves in a quadratic medium. Phys. Rev. Lett. 74, 5036–5039 (1995)

    Article  ADS  Google Scholar 

  189. R. Schiek, Y. Baek, G.I. Stegeman, One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in planar waveguides. Phys. Rev. E 53, 1138–1141 (1996)

    Article  ADS  Google Scholar 

  190. L. Torner, A. Barthelemy, Quadratic solitons: recent developments. IEEE J. Quantum Electron. 39, 22–30 (2003)

    Article  ADS  Google Scholar 

  191. P. Ginzburg, A.V. Krasavin, A.V. Zayats, Cascaded second-order surface plasmon solitons due to intrinsic metal nonlinearity. New J. Phys. 15, 013031 (2013)

    Article  ADS  Google Scholar 

  192. A.V. Krasavin, K.F. MacDonald, A.S. Schwanecke, N.I. Zheludev, Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics. Appl. Phys. Lett. 89, 031118 (2006)

    Article  ADS  Google Scholar 

  193. T.V. Murzina, T.V. Misuryaev, A.F. Kravets, J. Gudde, D. Schuhmacher, G. Marowsky, A.A. Nikulin, O.A. Aktsipetrov, Nonlinear magneto-optical Kerr effect and plasmon-assisted SHG in magnetic nanomaterials exhibiting giant magnetoresistance. Surf. Sci. 482, 1101–1106 (2001)

    Article  ADS  Google Scholar 

  194. I. Razdolski, D. Makarov, O.G. Schmidt, A. Kirilyuk, T. Rasing, V.V. Temnov, Nonlinear surface magnetoplasmonics in Kretschmann multilayers. ACS Photonics 3, 179–183 (2016)

    Article  Google Scholar 

  195. T. Jostmeier, M. Mangold, J. Zimmer, H. Karl, H.J. Krenner, C. Ruppert, M. Betz, Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites. Opt. Express 24, 17321–17331 (2016)

    Article  ADS  Google Scholar 

  196. V.L. Krutyanskiy, I.A. Kolmychek, E.A. Gan’shina, T.V. Murzina, P. Evans, R. Pollard, A.A. Stashkevich, G.A. Wurtz, A.V. Zayats, Plasmonic enhancement of nonlinear magneto-optical response in nickel nanorod metamaterials. Phys. Rev. B 87, 035116 (2013)

    Article  ADS  Google Scholar 

  197. V.K. Valev, A.V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C.G. Biris, N.C. Panoiu, B. De Clercq, M. Ameloot, O.A. Aktsipetrov, V.V. Moshchalkov, T. Verbiest, Plasmons reveal the direction of magnetization in nickel nanostructures. ACS Nano 5, 91–96 (2011)

    Article  Google Scholar 

  198. V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J.N. Chen, J. Nogues, P. Vavassori, R. Hillenbrand, J. Akerman, A. Dmitriev, Designer magnetoplasmonics with nickel nanoferromagnets. Nano Lett. 11, 5333–5338 (2011)

    Article  ADS  Google Scholar 

  199. A. Boltasseva, H.A. Atwater, Low-loss plasmonic metamaterials. Science 331, 290–291 (2011)

    Article  ADS  Google Scholar 

  200. H. Zhang, S. Virally, Q.L. Bao, L.K. Ping, S. Massar, N. Godbout, P. Kockaert, Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37, 1856–1858 (2012)

    Article  ADS  Google Scholar 

  201. J.D. Cox, I. Silveiro, F.J.G. de Abajo, Quantum effects in the nonlinear response of graphene plasmons. ACS Nano 10, 1995–2003 (2016)

    Article  Google Scholar 

  202. R.I. Woodward, R.T. Murray, C.F. Phelan, R.E.P. de Oliveira, T.H. Runcorn, E.J.R. Kelleher, S. Li, E.C. de Oliveira, G.J.M. Fechine, G. Eda, C.J.S. de Matos, Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy. 2D Mater. 4, 011006 (2016)

    Article  Google Scholar 

  203. M. Rahmani, G. Leo, I. Brener, A.V. Zayats, S. Maier, C. De Angelis, H. Tan, V.F. Gili, F. Karouta, R. Oulton, K. Vora, M. Lysevych, I. Staude, L. Xu, A. Miroshnichenko, C. Jagadish, D. Neshev, Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron. Adv. 1, 180021 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Krasavin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krasavin, A.V., Ginzburg, P., Zayats, A.V. (2019). Nonlinear Nanoplasmonics. In: Boyd, R., Lukishova, S., Zadkov, V. (eds) Quantum Photonics: Pioneering Advances and Emerging Applications. Springer Series in Optical Sciences, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-98402-5_8

Download citation

Publish with us

Policies and ethics