Skip to main content

Minimal Residual Disease in Multiple Myeloma: Impact on Response Assessment, Prognosis and Tumor Heterogeneity

  • Chapter
  • First Online:
Biological Mechanisms of Minimal Residual Disease and Systemic Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1100))

Abstract

Multiple Myeloma (MM) therapy has evolved rapidly over the past decade. With current multidrug combinations and autologous transplant, rates of overall response exceed 90% and complete response (CR) more than 50% in some studies. Unfortunately, despite higher rates of CR, relapse rates remain high suggesting that persistent disease may not be measured by current techniques. Traditionally, response rates were defined by urine and serum protein electrophoresis, immunofixation and histopathological absence of clonal plasma cells in the bone marrow. Currently, there are several validated sensitive assays to evaluate for MRD (minimal residual disease); multiparameter flow cytometry (MFC) including nextgeneration flow cytometry (NGF), next-generation sequencing (NGS), and allele specific oligonucleotide quantitative polymerase chain reaction (ASO-qPCR). These methods have provided a means to quantitatively assess residual disease and accurately prognosticate PFS and OS in myeloma. In this chapter, we will discuss the current techniques for MRD detection as well as describe techniques that are emerging for improved characterization of drug resistant residual populations that could be adapted for MRD monitoring in the future. While improved therapies are able to eradicate the dominant clone, resistant sub-clones persist and remain undetectable even by MRD techniques. Characterization of these clones will help design therapies against drug-resistant clones and move us closer to a cure in MM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barlogie B, Mitchell A, van Rhee F, Epstein J, Morgan GJ, Crowley J (2014) Curing myeloma at last: defining criteria and providing the evidence. Blood 124(20):3043–3051

    Article  CAS  Google Scholar 

  2. Yaccoby S (2018) Two states of myeloma stem cells. Clin Lymphoma Myeloma Leuk 18(1):38–43

    Article  Google Scholar 

  3. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al (2004) Characterization of clonogenic multiple myeloma cells. Blood 103(6):2332–2336

    Article  CAS  Google Scholar 

  4. Chen Z, Orlowski RZ, Wang M, Kwak L, McCarty N (2014) Osteoblastic niche supports the growth of quiescent multiple myeloma cells. Blood 123(14):2204–2208

    Article  CAS  Google Scholar 

  5. Rawstron AC, Orfao A, Beksac M, Bezdickova L, Brooimans RA, Bumbea H et al (2008) Report of the European myeloma network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 93(3):431–438

    Article  Google Scholar 

  6. Paiva B, Vidriales MB, Rosinol L, Martinez-Lopez J, Mateos MV, Ocio EM et al (2013) A multiparameter flow cytometry immunophenotypic algorithm for the identification of newly diagnosed symptomatic myeloma with an MGUS-like signature and long-term disease control. Leukemia 27(10):2056–2061

    Article  CAS  Google Scholar 

  7. Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, Garcia-Sanchez O, Bottcher S et al (2017) Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 31(10):2094–2103

    Article  CAS  Google Scholar 

  8. Muccio VE, Saraci E, Gilestro M, Gattei V, Zucchetto A, Astolfi M et al (2016) Multiple myeloma: new surface antigens for the characterization of plasma cells in the era of novel agents. Cytometry B Clin Cytom 90(1):81–90

    Article  CAS  Google Scholar 

  9. Paiva B, Vidriales MB, Cervero J, Mateo G, Perez JJ, Montalban MA et al (2008) Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 112(10):4017–4023

    Article  CAS  Google Scholar 

  10. Rawstron AC, Child JA, de Tute RM, Davies FE, Gregory WM, Bell SE et al (2013) Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council myeloma IX study. J Clin Oncol 31(20):2540–2547

    Article  Google Scholar 

  11. de Tute RM, Rawstron AC, Gregory WM, Child JA, Davies FE, Bell SE et al (2016) Minimal residual disease following autologous stem cell transplant in myeloma: impact on outcome is independent of induction regimen. Haematologica 101(2):e69–e71

    Article  Google Scholar 

  12. Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P et al (2016) International myeloma working group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 17(8):e328–ee46

    Article  Google Scholar 

  13. Munshi NC, Avet-Loiseau H, Rawstron AC, Owen RG, Child JA, Thakurta A et al (2017) Association of Minimal Residual Disease with Superior Survival Outcomes in patients with multiple myeloma: a meta-analysis. JAMA Oncol 3(1):28–35

    Article  Google Scholar 

  14. Chakraborty R, Muchtar E, Kumar SK, Jevremovic D, Buadi FK, Dingli D et al (2017) Impact of post-transplant response and minimal residual disease on survival in myeloma with high-risk cytogenetics. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 23(4):598–605

    Article  Google Scholar 

  15. Royston DJ, Gao Q, Nguyen N, Maslak P, Dogan A, Roshal M (2016) Single-tube 10-Fluorochrome analysis for efficient flow cytometric evaluation of minimal residual disease in plasma cell myeloma. Am J Clin Pathol 146(1):41–49

    Article  CAS  Google Scholar 

  16. Roshal M, Flores-Montero JA, Gao Q, Koeber M, Wardrope J, Durie BGM et al (2017) MRD detection in multiple myeloma: comparison between MSKCC 10-color single-tube and EuroFlow 8-color 2-tube methods. Blood Adv 1(12):728–732

    Article  CAS  Google Scholar 

  17. Frassanito MA, Rao L, Moschetta M, Ria R, Di Marzo L, De Luisi A et al (2014) Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies. Leukemia 28(4):904–916

    Article  CAS  Google Scholar 

  18. Cogbill CH, Spears MD, Vantuinen P, Harrington AM, Olteanu H, Kroft SH (2015) Morphologic and cytogenetic variables affect the flow cytometric recovery of plasma cell myeloma cells in bone marrow aspirates. Int J Lab Hematol 37(6):797–808

    Article  CAS  Google Scholar 

  19. Joshi R, Horncastle D, Elderfield K, Lampert I, Rahemtulla A, Naresh KN (2008) Bone marrow trephine combined with immunohistochemistry is superior to bone marrow aspirate in follow-up of myeloma patients. J Clin Pathol 61(2):213–216

    Article  CAS  Google Scholar 

  20. Biran N, Ely S, Chari A (2014) Controversies in the assessment of minimal residual disease in multiple myeloma: clinical significance of minimal residual disease negativity using highly sensitive techniques. Curr Hematol Malig Rep 9(4):368–378

    Article  Google Scholar 

  21. Puig N, Sarasquete ME, Balanzategui A, Martinez J, Paiva B, Garcia H et al (2014) Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia 28(2):391–397

    Article  CAS  Google Scholar 

  22. Bai Y, Wong KY, Fung TK, Chim CS (2016) High applicability of ASO-RQPCR for detection of minimal residual disease in multiple myeloma by entirely patient-specific primers/probes. J Hematol Oncol 9(1):107

    Article  Google Scholar 

  23. Avet-Loiseau H, Corre J, Lauwers-Cances V, Chretien M-L, Robillard N, Leleu X et al (2015) Evaluation of Minimal Residual Disease (MRD) by Next Generation Sequencing (NGS) is highly predictive of progression free survival in the IFM/DFCI 2009 trial. Blood 126(23):191

    Google Scholar 

  24. Ladetto M, Bruggemann M, Monitillo L, Ferrero S, Pepin F, Drandi D et al (2014) Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia 28(6):1299–1307

    Article  CAS  Google Scholar 

  25. Rasche L, Chavan SS, Stephens OW, Patel PH, Tytarenko R, Ashby C et al (2017) Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun 8(1):268

    Article  CAS  Google Scholar 

  26. Moreau P, Attal M, Caillot D, Macro M, Karlin L, Garderet L et al (2017) Prospective evaluation of magnetic resonance imaging and [(18)F]Fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial: results of the IMAJEM study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 35(25):2911–2918

    Article  CAS  Google Scholar 

  27. Zamagni E, Patriarca F, Nanni C, Zannetti B, Englaro E, Pezzi A et al (2011) Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood 118(23):5989–5995

    Article  CAS  Google Scholar 

  28. Bartel TB, Haessler J, Brown TL, Shaughnessy JD Jr, van Rhee F, Anaissie E et al (2009) F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114(10):2068–2076

    Article  CAS  Google Scholar 

  29. Usmani SZ, Mitchell A, Waheed S, Crowley J, Hoering A, Petty N et al (2013) Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3. Blood 121(10):1819–1823

    Article  CAS  Google Scholar 

  30. Davies FE, Rosenthal A, Rasche L, Petty NM, JE MD, Ntambi JA et al (2018) Treatment to suppression of focal lesions on positron emission tomography-computed tomography is a therapeutic goal in newly diagnosed multiple myeloma. Haematologica 103(6):1047–1053

    Article  Google Scholar 

  31. Sachpekidis C, Hillengass J, Goldschmidt H, Mosebach J, Pan L, Schlemmer HP et al (2015) Comparison of (18)F-FDG PET/CT and PET/MRI in patients with multiple myeloma. Am J Nucl Med Mol Imaging 5(5):469–478

    PubMed  PubMed Central  Google Scholar 

  32. San MJ (2014) Multiple myeloma: a model for scientific and clinical progress. Hematology Am Soc Hematol Educ Program 2014(1):1–7

    Article  Google Scholar 

  33. Paiva B, Corchete LA, Vidriales MB, Puig N, Maiso P, Rodriguez I et al (2016) Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance. Blood 127(15):1896–1906

    Article  CAS  Google Scholar 

  34. Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E et al (2012) Clonal competition with alternating dominance in multiple myeloma. Blood 120(5):1067–1076

    Article  CAS  Google Scholar 

  35. Ghosh A, Carreau N, Moscatello A, Rahman A, Qi J, Kim-Schulze S et al (2015) Flow cytometry based detection of MRD in bone marrow of patients with multiple myeloma: a comparison between fluorescent-based cytometry versus cytof. Blood 126(23):4195

    Google Scholar 

  36. Mithraprabhu S, Khong T, Ramachandran M, Chow A, Klarica D, Mai L et al (2017) Circulating tumour DNA analysis demonstrates spatial mutational heterogeneity that coincides with disease relapse in myeloma. Leukemia 31(8):1695–1705

    Article  CAS  Google Scholar 

  37. Mills JR, Barnidge DR, Dispenzieri A, Murray DL (2017) High sensitivity blood-based M-protein detection in sCR patients with multiple myeloma. Blood cancer journal. 7(8):e590

    Article  CAS  Google Scholar 

  38. Martinez-Lopez J, Lahuerta JJ, Pepin F, Gonzalez M, Barrio S, Ayala R et al (2014) Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 123(20):3073–3079

    Article  CAS  Google Scholar 

  39. Silvennoinen R, Lundan T, Kairisto V, Pelliniemi TT, Putkonen M, Anttila P et al (2014) Comparative analysis of minimal residual disease detection by multiparameter flow cytometry and enhanced ASO RQ-PCR in multiple myeloma. Blood Cancer J 4:e250

    Article  CAS  Google Scholar 

  40. Lohr JG, Kim S, Gould J, Knoechel B, Drier Y, Cotton MJ et al (2016) Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Science Translat Med 8(363):363ra147

    Article  Google Scholar 

  41. Ortega MA, Poirion O, Zhu X, Huang S, Wolfgruber TK, Sebra R et al (2017) Using single-cell multiple omics approaches to resolve tumor heterogeneity. Clin Transl Med 6(1):46

    Article  Google Scholar 

  42. Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M et al (2016) Daratumumab, Bortezomib, and dexamethasone for multiple myeloma. N Engl J Med 375(8):754–766

    Article  CAS  Google Scholar 

  43. Dimopoulos MA, Oriol A, Nahi H, San-Miguel J, Bahlis NJ, Usmani SZ et al (2016) Daratumumab, Lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med 375(14):1319–1331

    Article  CAS  Google Scholar 

  44. Avet-Loiseau H, Casneuf T, Chiu C, Laubach JP, Lee J-J, Moreau P et al (2016) Evaluation of minimal residual disease (MRD) in relapsed/refractory multiple myeloma (RRMM) patients treated with Daratumumab in combination with Lenalidomide plus dexamethasone or Bortezomib plus dexamethasone. Blood 128(22):246

    Google Scholar 

  45. Paiva B, Martinez-Lopez J, Vidriales MB, Mateos MV, Montalban MA, Fernandez-Redondo E et al (2011) Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29(12):1627–1633

    Article  CAS  Google Scholar 

  46. Korthals M, Sehnke N, Kronenwett R, Bruns I, Mau J, Zohren F et al (2012) The level of minimal residual disease in the bone marrow of patients with multiple myeloma before high-dose therapy and autologous blood stem cell transplantation is an independent predictive parameter. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation 18(3):423–31.e3

    Article  Google Scholar 

  47. Paiva B, Gutierrez NC, Rosinol L, Vidriales MB, Montalban MA, Martinez-Lopez J et al (2012) High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood 119(3):687–691

    Article  CAS  Google Scholar 

  48. Roussel M, Lauwers-Cances V, Robillard N, Hulin C, Leleu X, Benboubker L et al (2014) Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma: a phase II study by the Intergroupe francophone du Myelome. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 32(25):2712–2717

    Article  CAS  Google Scholar 

  49. Ferrero S, Ladetto M, Drandi D, Cavallo F, Genuardi E, Urbano M et al (2015) Long-term results of the GIMEMA VEL-03-096 trial in MM patients receiving VTD consolidation after ASCT: MRD kinetics’ impact on survival. Leukemia 29(3):689–695

    Article  CAS  Google Scholar 

  50. Korde N, Roschewski M, Zingone A, Kwok M, Manasanch EE, Bhutani M et al (2015) Treatment with carfilzomib-Lenalidomide-dexamethasone with Lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol 1(6):746–754

    Article  Google Scholar 

  51. Ludwig H, Greil R, Masszi T, Spicka I, Shpilberg O, Hajek R et al (2015) Bortezomib, thalidomide and dexamethasone, with or without cyclophosphamide, for patients with previously untreated multiple myeloma: 5-year follow-up. Br J Haematol 171(3):344–354

    Article  CAS  Google Scholar 

  52. Oliva S, Gambella M, Gilestro M, Muccio VE, Gay F, Drandi D et al (2017) Minimal residual disease after transplantation or lenalidomide-based consolidation in myeloma patients: a prospective analysis. Oncotarget 8(4):5924–5935

    Article  Google Scholar 

  53. Paiva B, Cedena MT, Puig N, Arana P, Vidriales MB, Cordon L et al (2016) Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients. Blood 127(25):3165–3174

    Article  CAS  Google Scholar 

  54. Attal M, Lauwers-Cances V, Hulin C, Leleu X, Caillot D, Escoffre M et al (2017) Lenalidomide, Bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med 376(14):1311–1320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Parekh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berger, N., Kim-Schulze, S., Parekh, S. (2018). Minimal Residual Disease in Multiple Myeloma: Impact on Response Assessment, Prognosis and Tumor Heterogeneity. In: Aguirre-Ghiso, J. (eds) Biological Mechanisms of Minimal Residual Disease and Systemic Cancer. Advances in Experimental Medicine and Biology, vol 1100. Springer, Cham. https://doi.org/10.1007/978-3-319-97746-1_9

Download citation

Publish with us

Policies and ethics